Properties

Label 2-167310-1.1-c1-0-129
Degree $2$
Conductor $167310$
Sign $-1$
Analytic cond. $1335.97$
Root an. cond. $36.5510$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s + 2·7-s + 8-s − 10-s + 11-s + 2·14-s + 16-s + 2·17-s − 20-s + 22-s − 6·23-s + 25-s + 2·28-s − 4·29-s + 4·31-s + 32-s + 2·34-s − 2·35-s + 8·37-s − 40-s + 6·41-s + 4·43-s + 44-s − 6·46-s − 12·47-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.755·7-s + 0.353·8-s − 0.316·10-s + 0.301·11-s + 0.534·14-s + 1/4·16-s + 0.485·17-s − 0.223·20-s + 0.213·22-s − 1.25·23-s + 1/5·25-s + 0.377·28-s − 0.742·29-s + 0.718·31-s + 0.176·32-s + 0.342·34-s − 0.338·35-s + 1.31·37-s − 0.158·40-s + 0.937·41-s + 0.609·43-s + 0.150·44-s − 0.884·46-s − 1.75·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 167310 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 167310 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(167310\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1335.97\)
Root analytic conductor: \(36.5510\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 167310,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 - T \)
13 \( 1 \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.41396823584421, −13.01545727627191, −12.49941314517534, −12.05903836823127, −11.59311536539934, −11.23364797394729, −10.87754343995991, −10.17073719675789, −9.694198251258992, −9.286481026897457, −8.364173036191843, −8.205676317789139, −7.575745461265031, −7.318127946596939, −6.481715594064450, −6.058152738939432, −5.672633975779798, −4.853485029912630, −4.589343776039363, −4.014607229587242, −3.521948470881748, −2.878444777686966, −2.244958188993287, −1.594480335700127, −0.9975785724240999, 0, 0.9975785724240999, 1.594480335700127, 2.244958188993287, 2.878444777686966, 3.521948470881748, 4.014607229587242, 4.589343776039363, 4.853485029912630, 5.672633975779798, 6.058152738939432, 6.481715594064450, 7.318127946596939, 7.575745461265031, 8.205676317789139, 8.364173036191843, 9.286481026897457, 9.694198251258992, 10.17073719675789, 10.87754343995991, 11.23364797394729, 11.59311536539934, 12.05903836823127, 12.49941314517534, 13.01545727627191, 13.41396823584421

Graph of the $Z$-function along the critical line