Properties

Label 2-162624-1.1-c1-0-10
Degree $2$
Conductor $162624$
Sign $1$
Analytic cond. $1298.55$
Root an. cond. $36.0355$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·5-s − 7-s + 9-s + 3·15-s + 7·17-s − 6·19-s + 21-s − 4·23-s + 4·25-s − 27-s − 6·29-s − 2·31-s + 3·35-s + 2·37-s + 2·41-s − 5·43-s − 3·45-s − 3·47-s + 49-s − 7·51-s + 4·53-s + 6·57-s − 9·59-s − 4·61-s − 63-s + 13·67-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.34·5-s − 0.377·7-s + 1/3·9-s + 0.774·15-s + 1.69·17-s − 1.37·19-s + 0.218·21-s − 0.834·23-s + 4/5·25-s − 0.192·27-s − 1.11·29-s − 0.359·31-s + 0.507·35-s + 0.328·37-s + 0.312·41-s − 0.762·43-s − 0.447·45-s − 0.437·47-s + 1/7·49-s − 0.980·51-s + 0.549·53-s + 0.794·57-s − 1.17·59-s − 0.512·61-s − 0.125·63-s + 1.58·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162624 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162624\)    =    \(2^{6} \cdot 3 \cdot 7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(1298.55\)
Root analytic conductor: \(36.0355\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 162624,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3085832569\)
\(L(\frac12)\) \(\approx\) \(0.3085832569\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 + T \)
11 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 7 T + p T^{2} \) 1.17.ah
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 5 T + p T^{2} \) 1.83.af
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.05766339634978, −12.54494201780684, −12.39027175410901, −11.86417632757414, −11.38300142852450, −10.99041512246292, −10.50499962239123, −9.945186562115140, −9.571347667102353, −8.896922593156930, −8.284913502419220, −7.865336987626644, −7.549224143440107, −6.967121473866043, −6.346170770135957, −5.971590318309965, −5.310819946425330, −4.842647103178308, −4.082728826753011, −3.778595343325726, −3.367239443451589, −2.533590478838260, −1.789719727291775, −1.020543168695251, −0.1941845076474393, 0.1941845076474393, 1.020543168695251, 1.789719727291775, 2.533590478838260, 3.367239443451589, 3.778595343325726, 4.082728826753011, 4.842647103178308, 5.310819946425330, 5.971590318309965, 6.346170770135957, 6.967121473866043, 7.549224143440107, 7.865336987626644, 8.284913502419220, 8.896922593156930, 9.571347667102353, 9.945186562115140, 10.50499962239123, 10.99041512246292, 11.38300142852450, 11.86417632757414, 12.39027175410901, 12.54494201780684, 13.05766339634978

Graph of the $Z$-function along the critical line