Properties

Label 2-162288-1.1-c1-0-141
Degree $2$
Conductor $162288$
Sign $-1$
Analytic cond. $1295.87$
Root an. cond. $35.9982$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·11-s − 2·13-s − 6·17-s + 2·19-s + 23-s − 5·25-s + 6·29-s + 8·31-s + 8·37-s + 6·41-s − 2·43-s + 12·53-s − 8·61-s + 10·67-s − 14·73-s − 8·79-s − 6·83-s + 6·89-s + 10·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 1.80·11-s − 0.554·13-s − 1.45·17-s + 0.458·19-s + 0.208·23-s − 25-s + 1.11·29-s + 1.43·31-s + 1.31·37-s + 0.937·41-s − 0.304·43-s + 1.64·53-s − 1.02·61-s + 1.22·67-s − 1.63·73-s − 0.900·79-s − 0.658·83-s + 0.635·89-s + 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162288\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(1295.87\)
Root analytic conductor: \(35.9982\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 162288,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
23 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.47442038228897, −13.18651442212157, −12.39767575200028, −12.02802163441195, −11.56170953400466, −11.37957989804839, −10.64860247770511, −10.07770051933726, −9.625938116525398, −9.249062175291452, −8.700384749708659, −8.341246773483795, −7.624408518107295, −7.116817850991959, −6.649096397899256, −6.184480805771326, −5.826639630793830, −4.892573442094459, −4.463300058312840, −4.097745928921850, −3.511000293163259, −2.572187250057506, −2.409467722591750, −1.360563668148612, −0.9868012569022102, 0, 0.9868012569022102, 1.360563668148612, 2.409467722591750, 2.572187250057506, 3.511000293163259, 4.097745928921850, 4.463300058312840, 4.892573442094459, 5.826639630793830, 6.184480805771326, 6.649096397899256, 7.116817850991959, 7.624408518107295, 8.341246773483795, 8.700384749708659, 9.249062175291452, 9.625938116525398, 10.07770051933726, 10.64860247770511, 11.37957989804839, 11.56170953400466, 12.02802163441195, 12.39767575200028, 13.18651442212157, 13.47442038228897

Graph of the $Z$-function along the critical line