Properties

Label 2-162288-1.1-c1-0-119
Degree $2$
Conductor $162288$
Sign $-1$
Analytic cond. $1295.87$
Root an. cond. $35.9982$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 4·11-s − 2·13-s + 6·17-s + 23-s − 25-s + 2·29-s + 4·31-s + 6·37-s − 6·41-s − 12·43-s + 12·47-s − 6·53-s − 8·55-s + 4·59-s + 10·61-s + 4·65-s − 4·67-s − 16·71-s − 2·73-s − 8·79-s + 16·83-s − 12·85-s + 6·89-s + 2·97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 0.894·5-s + 1.20·11-s − 0.554·13-s + 1.45·17-s + 0.208·23-s − 1/5·25-s + 0.371·29-s + 0.718·31-s + 0.986·37-s − 0.937·41-s − 1.82·43-s + 1.75·47-s − 0.824·53-s − 1.07·55-s + 0.520·59-s + 1.28·61-s + 0.496·65-s − 0.488·67-s − 1.89·71-s − 0.234·73-s − 0.900·79-s + 1.75·83-s − 1.30·85-s + 0.635·89-s + 0.203·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162288\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(1295.87\)
Root analytic conductor: \(35.9982\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 162288,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
23 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + p T^{2} \) 1.19.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.53782643675204, −13.01808069210946, −12.29162352848933, −12.01345756741671, −11.75542904646199, −11.34237695373164, −10.61246972396748, −10.08665987558826, −9.767814423238589, −9.205434986836740, −8.593869134683008, −8.220452064479257, −7.627666828434914, −7.315381015383027, −6.660141955109967, −6.272419354658317, −5.558509579663567, −5.087651535501685, −4.365763741911146, −4.055963817591134, −3.367447629871431, −3.025347611625558, −2.187844389332399, −1.371486733563656, −0.8824973290569547, 0, 0.8824973290569547, 1.371486733563656, 2.187844389332399, 3.025347611625558, 3.367447629871431, 4.055963817591134, 4.365763741911146, 5.087651535501685, 5.558509579663567, 6.272419354658317, 6.660141955109967, 7.315381015383027, 7.627666828434914, 8.220452064479257, 8.593869134683008, 9.205434986836740, 9.767814423238589, 10.08665987558826, 10.61246972396748, 11.34237695373164, 11.75542904646199, 12.01345756741671, 12.29162352848933, 13.01808069210946, 13.53782643675204

Graph of the $Z$-function along the critical line