Properties

Label 2-162288-1.1-c1-0-114
Degree $2$
Conductor $162288$
Sign $-1$
Analytic cond. $1295.87$
Root an. cond. $35.9982$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 11-s − 2·13-s + 4·17-s − 3·19-s + 23-s − 5·25-s + 6·29-s − 2·31-s − 2·37-s + 41-s + 8·43-s + 5·47-s − 3·53-s − 5·59-s − 13·61-s + 16·73-s + 2·79-s − 6·83-s + 6·89-s − 10·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 0.301·11-s − 0.554·13-s + 0.970·17-s − 0.688·19-s + 0.208·23-s − 25-s + 1.11·29-s − 0.359·31-s − 0.328·37-s + 0.156·41-s + 1.21·43-s + 0.729·47-s − 0.412·53-s − 0.650·59-s − 1.66·61-s + 1.87·73-s + 0.225·79-s − 0.658·83-s + 0.635·89-s − 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162288\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(1295.87\)
Root analytic conductor: \(35.9982\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 162288,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
23 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 - T + p T^{2} \) 1.11.ab
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 3 T + p T^{2} \) 1.19.d
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - T + p T^{2} \) 1.41.ab
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 5 T + p T^{2} \) 1.47.af
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 + 5 T + p T^{2} \) 1.59.f
61 \( 1 + 13 T + p T^{2} \) 1.61.n
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.69511050270140, −12.83964963709808, −12.46769215251192, −12.25308908454013, −11.60979179591856, −11.16893466567249, −10.57931170628298, −10.17486230406799, −9.753947708363090, −9.023128140028796, −8.944542931094056, −8.023891504313258, −7.742178333108787, −7.302421435336716, −6.575065934133356, −6.181717778636836, −5.668089733295074, −5.043843966383140, −4.564076580470100, −3.954402175419426, −3.457354776113591, −2.758299147308936, −2.240980336790458, −1.518503510363301, −0.8431519207860697, 0, 0.8431519207860697, 1.518503510363301, 2.240980336790458, 2.758299147308936, 3.457354776113591, 3.954402175419426, 4.564076580470100, 5.043843966383140, 5.668089733295074, 6.181717778636836, 6.575065934133356, 7.302421435336716, 7.742178333108787, 8.023891504313258, 8.944542931094056, 9.023128140028796, 9.753947708363090, 10.17486230406799, 10.57931170628298, 11.16893466567249, 11.60979179591856, 12.25308908454013, 12.46769215251192, 12.83964963709808, 13.69511050270140

Graph of the $Z$-function along the critical line