Properties

Label 2-162288-1.1-c1-0-10
Degree $2$
Conductor $162288$
Sign $1$
Analytic cond. $1295.87$
Root an. cond. $35.9982$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·11-s − 6·13-s + 2·17-s + 2·19-s + 23-s − 5·25-s − 6·29-s − 6·31-s − 2·37-s − 4·43-s − 2·47-s + 10·53-s − 4·59-s − 8·61-s − 12·67-s + 4·73-s − 4·79-s − 2·83-s − 10·89-s − 14·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 1.20·11-s − 1.66·13-s + 0.485·17-s + 0.458·19-s + 0.208·23-s − 25-s − 1.11·29-s − 1.07·31-s − 0.328·37-s − 0.609·43-s − 0.291·47-s + 1.37·53-s − 0.520·59-s − 1.02·61-s − 1.46·67-s + 0.468·73-s − 0.450·79-s − 0.219·83-s − 1.05·89-s − 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162288\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(1295.87\)
Root analytic conductor: \(35.9982\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 162288,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.057711739\)
\(L(\frac12)\) \(\approx\) \(1.057711739\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
23 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.23020839814436, −12.72599070266094, −12.25180540913722, −11.80432136244680, −11.56795969918230, −10.94919982305969, −10.25685346831139, −9.938364593176327, −9.292727916348404, −9.210183629569841, −8.506537435981208, −7.763044937007176, −7.411528661387362, −7.078727018736473, −6.449054613946514, −5.776155218764663, −5.426422337232664, −4.816534631917192, −4.230737595783088, −3.694412500005511, −3.183529765105321, −2.465537822408299, −1.796667245899120, −1.337627256678072, −0.2930137515968027, 0.2930137515968027, 1.337627256678072, 1.796667245899120, 2.465537822408299, 3.183529765105321, 3.694412500005511, 4.230737595783088, 4.816534631917192, 5.426422337232664, 5.776155218764663, 6.449054613946514, 7.078727018736473, 7.411528661387362, 7.763044937007176, 8.506537435981208, 9.210183629569841, 9.292727916348404, 9.938364593176327, 10.25685346831139, 10.94919982305969, 11.56795969918230, 11.80432136244680, 12.25180540913722, 12.72599070266094, 13.23020839814436

Graph of the $Z$-function along the critical line