Properties

Label 2-1584-1.1-c1-0-4
Degree $2$
Conductor $1584$
Sign $1$
Analytic cond. $12.6483$
Root an. cond. $3.55644$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s − 11-s + 2·13-s + 6·17-s − 2·19-s − 5·25-s + 6·29-s + 4·31-s + 2·37-s − 6·41-s + 10·43-s + 12·47-s − 3·49-s + 12·53-s + 12·59-s − 10·61-s − 8·67-s + 12·71-s + 14·73-s + 2·77-s − 2·79-s − 12·83-s − 4·91-s + 2·97-s + 6·101-s − 8·103-s + 12·107-s + ⋯
L(s)  = 1  − 0.755·7-s − 0.301·11-s + 0.554·13-s + 1.45·17-s − 0.458·19-s − 25-s + 1.11·29-s + 0.718·31-s + 0.328·37-s − 0.937·41-s + 1.52·43-s + 1.75·47-s − 3/7·49-s + 1.64·53-s + 1.56·59-s − 1.28·61-s − 0.977·67-s + 1.42·71-s + 1.63·73-s + 0.227·77-s − 0.225·79-s − 1.31·83-s − 0.419·91-s + 0.203·97-s + 0.597·101-s − 0.788·103-s + 1.16·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1584\)    =    \(2^{4} \cdot 3^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(12.6483\)
Root analytic conductor: \(3.55644\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1584,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.563116816\)
\(L(\frac12)\) \(\approx\) \(1.563116816\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.527609696179096575338835429540, −8.576230685413191782049668920273, −7.88290865143984025443570728659, −6.99781897214926848513247214405, −6.09818303485559998266442512181, −5.49460624335439645618753295389, −4.26755166817314543764872138558, −3.41506653312949974796192176000, −2.43470426817624130132300754750, −0.890846737799134523556663864580, 0.890846737799134523556663864580, 2.43470426817624130132300754750, 3.41506653312949974796192176000, 4.26755166817314543764872138558, 5.49460624335439645618753295389, 6.09818303485559998266442512181, 6.99781897214926848513247214405, 7.88290865143984025443570728659, 8.576230685413191782049668920273, 9.527609696179096575338835429540

Graph of the $Z$-function along the critical line