Properties

Label 2-152e2-1.1-c1-0-50
Degree $2$
Conductor $23104$
Sign $-1$
Analytic cond. $184.486$
Root an. cond. $13.5825$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 5-s + 3·7-s + 9-s − 3·11-s − 4·13-s + 2·15-s + 5·17-s + 6·21-s − 4·25-s − 4·27-s + 2·29-s + 8·31-s − 6·33-s + 3·35-s − 10·37-s − 8·39-s − 6·41-s − 7·43-s + 45-s + 9·47-s + 2·49-s + 10·51-s − 8·53-s − 3·55-s − 14·59-s + 5·61-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.447·5-s + 1.13·7-s + 1/3·9-s − 0.904·11-s − 1.10·13-s + 0.516·15-s + 1.21·17-s + 1.30·21-s − 4/5·25-s − 0.769·27-s + 0.371·29-s + 1.43·31-s − 1.04·33-s + 0.507·35-s − 1.64·37-s − 1.28·39-s − 0.937·41-s − 1.06·43-s + 0.149·45-s + 1.31·47-s + 2/7·49-s + 1.40·51-s − 1.09·53-s − 0.404·55-s − 1.82·59-s + 0.640·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 23104 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23104 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(23104\)    =    \(2^{6} \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(184.486\)
Root analytic conductor: \(13.5825\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 23104,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
19 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 5 T + p T^{2} \) 1.17.af
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 15 T + p T^{2} \) 1.73.p
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.50056375545883, −15.12300693020017, −14.57442240291786, −14.10840755145883, −13.75715562389216, −13.32527273643694, −12.42149825262587, −12.02131368367538, −11.50640246931258, −10.61705502831035, −10.08622765391477, −9.820496649820573, −8.971069706865481, −8.467287163406758, −7.848125940335852, −7.700370978050024, −6.923722403675670, −5.977853854264242, −5.285455866103631, −4.907476858799743, −4.131943291905665, −3.140155096846263, −2.795420780060002, −1.959213407238686, −1.454818415578364, 0, 1.454818415578364, 1.959213407238686, 2.795420780060002, 3.140155096846263, 4.131943291905665, 4.907476858799743, 5.285455866103631, 5.977853854264242, 6.923722403675670, 7.700370978050024, 7.848125940335852, 8.467287163406758, 8.971069706865481, 9.820496649820573, 10.08622765391477, 10.61705502831035, 11.50640246931258, 12.02131368367538, 12.42149825262587, 13.32527273643694, 13.75715562389216, 14.10840755145883, 14.57442240291786, 15.12300693020017, 15.50056375545883

Graph of the $Z$-function along the critical line