Properties

Label 2-1520-1.1-c1-0-21
Degree $2$
Conductor $1520$
Sign $-1$
Analytic cond. $12.1372$
Root an. cond. $3.48385$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 5-s + 7-s + 6·9-s − 4·11-s + 13-s − 3·15-s − 7·17-s + 19-s − 3·21-s + 5·23-s + 25-s − 9·27-s + 7·29-s + 2·31-s + 12·33-s + 35-s − 6·37-s − 3·39-s + 6·41-s − 10·43-s + 6·45-s + 8·47-s − 6·49-s + 21·51-s − 3·53-s − 4·55-s + ⋯
L(s)  = 1  − 1.73·3-s + 0.447·5-s + 0.377·7-s + 2·9-s − 1.20·11-s + 0.277·13-s − 0.774·15-s − 1.69·17-s + 0.229·19-s − 0.654·21-s + 1.04·23-s + 1/5·25-s − 1.73·27-s + 1.29·29-s + 0.359·31-s + 2.08·33-s + 0.169·35-s − 0.986·37-s − 0.480·39-s + 0.937·41-s − 1.52·43-s + 0.894·45-s + 1.16·47-s − 6/7·49-s + 2.94·51-s − 0.412·53-s − 0.539·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1520\)    =    \(2^{4} \cdot 5 \cdot 19\)
Sign: $-1$
Analytic conductor: \(12.1372\)
Root analytic conductor: \(3.48385\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1520,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
19 \( 1 - T \)
good3 \( 1 + p T + p T^{2} \)
7 \( 1 - T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 - T + p T^{2} \)
17 \( 1 + 7 T + p T^{2} \)
23 \( 1 - 5 T + p T^{2} \)
29 \( 1 - 7 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + 10 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 + 3 T + p T^{2} \)
59 \( 1 + 5 T + p T^{2} \)
61 \( 1 + 8 T + p T^{2} \)
67 \( 1 + 11 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 + 9 T + p T^{2} \)
79 \( 1 + 6 T + p T^{2} \)
83 \( 1 + 14 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.166794634373524225750658480305, −8.244607052792420796753047387180, −7.13143932663839007991861548890, −6.53248965558733217968462373412, −5.72947607652733769777621747465, −4.94911729364798335949026706022, −4.48492827514281023815695123179, −2.76829964334084701202004565949, −1.41596078744357748965463468505, 0, 1.41596078744357748965463468505, 2.76829964334084701202004565949, 4.48492827514281023815695123179, 4.94911729364798335949026706022, 5.72947607652733769777621747465, 6.53248965558733217968462373412, 7.13143932663839007991861548890, 8.244607052792420796753047387180, 9.166794634373524225750658480305

Graph of the $Z$-function along the critical line