Properties

Label 2-151008-1.1-c1-0-45
Degree $2$
Conductor $151008$
Sign $1$
Analytic cond. $1205.80$
Root an. cond. $34.7247$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 7-s + 9-s − 13-s + 7·19-s + 21-s − 8·23-s − 5·25-s − 27-s − 8·29-s + 31-s − 3·37-s + 39-s + 8·41-s − 8·43-s − 12·47-s − 6·49-s − 6·53-s − 7·57-s − 6·59-s − 61-s − 63-s + 13·67-s + 8·69-s − 12·71-s − 73-s + 5·75-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.377·7-s + 1/3·9-s − 0.277·13-s + 1.60·19-s + 0.218·21-s − 1.66·23-s − 25-s − 0.192·27-s − 1.48·29-s + 0.179·31-s − 0.493·37-s + 0.160·39-s + 1.24·41-s − 1.21·43-s − 1.75·47-s − 6/7·49-s − 0.824·53-s − 0.927·57-s − 0.781·59-s − 0.128·61-s − 0.125·63-s + 1.58·67-s + 0.963·69-s − 1.42·71-s − 0.117·73-s + 0.577·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 151008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 151008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(151008\)    =    \(2^{5} \cdot 3 \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(1205.80\)
Root analytic conductor: \(34.7247\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 151008,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + T + p T^{2} \) 1.7.b
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + T + p T^{2} \) 1.73.b
79 \( 1 + 5 T + p T^{2} \) 1.79.f
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 - 11 T + p T^{2} \) 1.97.al
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.69435218842330, −13.34834259826734, −12.81244957519362, −12.36125619358027, −11.71726731966860, −11.62098945596338, −11.06777823805536, −10.42676274191130, −9.767964669917890, −9.710938921876508, −9.256293932895967, −8.346208204091868, −7.907930702754258, −7.506642342967522, −6.991533832370942, −6.254974346957170, −6.033087882577113, −5.356945813686001, −5.004183276923176, −4.277493008156697, −3.670828048848827, −3.293957717405554, −2.486467105793706, −1.735459131241282, −1.294099659429168, 0, 0, 1.294099659429168, 1.735459131241282, 2.486467105793706, 3.293957717405554, 3.670828048848827, 4.277493008156697, 5.004183276923176, 5.356945813686001, 6.033087882577113, 6.254974346957170, 6.991533832370942, 7.506642342967522, 7.907930702754258, 8.346208204091868, 9.256293932895967, 9.710938921876508, 9.767964669917890, 10.42676274191130, 11.06777823805536, 11.62098945596338, 11.71726731966860, 12.36125619358027, 12.81244957519362, 13.34834259826734, 13.69435218842330

Graph of the $Z$-function along the critical line