Properties

Label 2-151008-1.1-c1-0-39
Degree $2$
Conductor $151008$
Sign $-1$
Analytic cond. $1205.80$
Root an. cond. $34.7247$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 4·5-s + 4·7-s + 9-s − 13-s − 4·15-s + 4·17-s + 4·21-s − 8·23-s + 11·25-s + 27-s + 8·29-s + 2·31-s − 16·35-s + 2·37-s − 39-s + 10·41-s + 6·43-s − 4·45-s + 9·49-s + 4·51-s − 6·53-s + 14·61-s + 4·63-s + 4·65-s − 6·67-s − 8·69-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.78·5-s + 1.51·7-s + 1/3·9-s − 0.277·13-s − 1.03·15-s + 0.970·17-s + 0.872·21-s − 1.66·23-s + 11/5·25-s + 0.192·27-s + 1.48·29-s + 0.359·31-s − 2.70·35-s + 0.328·37-s − 0.160·39-s + 1.56·41-s + 0.914·43-s − 0.596·45-s + 9/7·49-s + 0.560·51-s − 0.824·53-s + 1.79·61-s + 0.503·63-s + 0.496·65-s − 0.733·67-s − 0.963·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 151008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 151008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(151008\)    =    \(2^{5} \cdot 3 \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1205.80\)
Root analytic conductor: \(34.7247\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 151008,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 6 T + p T^{2} \) 1.67.g
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.79827523988668, −12.98335268829243, −12.40640684857077, −12.11267959461423, −11.73543475666558, −11.25738971122625, −10.86976489723125, −10.19447213834087, −9.863957117995558, −9.034200197009619, −8.447156322380037, −8.222759471415717, −7.821890096643498, −7.446169957264655, −7.055146783992792, −6.146850412924758, −5.623222917272189, −4.801739321401551, −4.463792703523461, −4.095455892523674, −3.554317653831100, −2.788817797995863, −2.380901493248486, −1.376859869976055, −0.9631516755095550, 0, 0.9631516755095550, 1.376859869976055, 2.380901493248486, 2.788817797995863, 3.554317653831100, 4.095455892523674, 4.463792703523461, 4.801739321401551, 5.623222917272189, 6.146850412924758, 7.055146783992792, 7.446169957264655, 7.821890096643498, 8.222759471415717, 8.447156322380037, 9.034200197009619, 9.863957117995558, 10.19447213834087, 10.86976489723125, 11.25738971122625, 11.73543475666558, 12.11267959461423, 12.40640684857077, 12.98335268829243, 13.79827523988668

Graph of the $Z$-function along the critical line