Properties

Label 2-14976-1.1-c1-0-29
Degree $2$
Conductor $14976$
Sign $-1$
Analytic cond. $119.583$
Root an. cond. $10.9354$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·7-s − 4·11-s + 13-s − 4·17-s − 6·19-s − 5·25-s + 6·29-s − 4·31-s + 6·37-s + 6·41-s + 4·43-s + 8·47-s + 9·49-s − 6·53-s − 12·59-s + 10·61-s + 2·67-s + 12·71-s − 10·73-s − 16·77-s + 10·79-s − 4·83-s − 10·89-s + 4·91-s + 14·97-s + 101-s + 103-s + ⋯
L(s)  = 1  + 1.51·7-s − 1.20·11-s + 0.277·13-s − 0.970·17-s − 1.37·19-s − 25-s + 1.11·29-s − 0.718·31-s + 0.986·37-s + 0.937·41-s + 0.609·43-s + 1.16·47-s + 9/7·49-s − 0.824·53-s − 1.56·59-s + 1.28·61-s + 0.244·67-s + 1.42·71-s − 1.17·73-s − 1.82·77-s + 1.12·79-s − 0.439·83-s − 1.05·89-s + 0.419·91-s + 1.42·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14976 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14976 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14976\)    =    \(2^{7} \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(119.583\)
Root analytic conductor: \(10.9354\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 14976,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.16149798823752, −15.74161910949492, −15.21785180482846, −14.73114717642115, −14.06439712299145, −13.67409429377346, −12.88983840110262, −12.57254948030845, −11.71440257155431, −11.09678659177245, −10.82760033961999, −10.30887822000224, −9.393174261313591, −8.779334628918757, −8.109183262089287, −7.881829960588877, −7.131727040273547, −6.251824616231789, −5.715568826454950, −4.892724899406947, −4.466936763134407, −3.821384395000940, −2.477041311642609, −2.254841525012367, −1.206899576857504, 0, 1.206899576857504, 2.254841525012367, 2.477041311642609, 3.821384395000940, 4.466936763134407, 4.892724899406947, 5.715568826454950, 6.251824616231789, 7.131727040273547, 7.881829960588877, 8.109183262089287, 8.779334628918757, 9.393174261313591, 10.30887822000224, 10.82760033961999, 11.09678659177245, 11.71440257155431, 12.57254948030845, 12.88983840110262, 13.67409429377346, 14.06439712299145, 14.73114717642115, 15.21785180482846, 15.74161910949492, 16.16149798823752

Graph of the $Z$-function along the critical line