Properties

Label 2-148720-1.1-c1-0-37
Degree $2$
Conductor $148720$
Sign $-1$
Analytic cond. $1187.53$
Root an. cond. $34.4606$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 4·7-s − 3·9-s − 11-s − 6·17-s + 4·19-s − 4·23-s + 25-s − 2·29-s + 8·31-s − 4·35-s + 10·37-s − 10·41-s + 3·45-s + 4·47-s + 9·49-s − 10·53-s + 55-s − 4·59-s − 2·61-s − 12·63-s − 8·67-s + 14·73-s − 4·77-s + 16·79-s + 9·81-s − 8·83-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.51·7-s − 9-s − 0.301·11-s − 1.45·17-s + 0.917·19-s − 0.834·23-s + 1/5·25-s − 0.371·29-s + 1.43·31-s − 0.676·35-s + 1.64·37-s − 1.56·41-s + 0.447·45-s + 0.583·47-s + 9/7·49-s − 1.37·53-s + 0.134·55-s − 0.520·59-s − 0.256·61-s − 1.51·63-s − 0.977·67-s + 1.63·73-s − 0.455·77-s + 1.80·79-s + 81-s − 0.878·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 148720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 148720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(148720\)    =    \(2^{4} \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1187.53\)
Root analytic conductor: \(34.4606\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 148720,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
11 \( 1 + T \)
13 \( 1 \)
good3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.65013581340386, −13.40575320312547, −12.31901032222923, −12.18990556859870, −11.51880944123420, −11.29218326146978, −10.89146438362918, −10.44272365204026, −9.563369670795758, −9.326058155917089, −8.507180673906481, −8.203073136067285, −7.963796324920777, −7.386907374567269, −6.687706003752972, −6.185801171744025, −5.601784677666359, −5.007380426364403, −4.624922561005196, −4.177071844708673, −3.397253362567059, −2.761818923538773, −2.230168941396869, −1.605760336007647, −0.7988554040463604, 0, 0.7988554040463604, 1.605760336007647, 2.230168941396869, 2.761818923538773, 3.397253362567059, 4.177071844708673, 4.624922561005196, 5.007380426364403, 5.601784677666359, 6.185801171744025, 6.687706003752972, 7.386907374567269, 7.963796324920777, 8.203073136067285, 8.507180673906481, 9.326058155917089, 9.563369670795758, 10.44272365204026, 10.89146438362918, 11.29218326146978, 11.51880944123420, 12.18990556859870, 12.31901032222923, 13.40575320312547, 13.65013581340386

Graph of the $Z$-function along the critical line