Properties

Label 2-148720-1.1-c1-0-23
Degree $2$
Conductor $148720$
Sign $-1$
Analytic cond. $1187.53$
Root an. cond. $34.4606$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 3·9-s + 11-s − 7·17-s + 19-s − 2·23-s + 25-s − 8·29-s + 2·31-s − 9·37-s − 41-s + 9·43-s + 3·45-s − 7·47-s − 7·49-s − 12·53-s − 55-s − 10·59-s − 2·61-s + 13·67-s − 6·71-s − 4·73-s + 2·79-s + 9·81-s + 6·83-s + 7·85-s − 10·89-s + ⋯
L(s)  = 1  − 0.447·5-s − 9-s + 0.301·11-s − 1.69·17-s + 0.229·19-s − 0.417·23-s + 1/5·25-s − 1.48·29-s + 0.359·31-s − 1.47·37-s − 0.156·41-s + 1.37·43-s + 0.447·45-s − 1.02·47-s − 49-s − 1.64·53-s − 0.134·55-s − 1.30·59-s − 0.256·61-s + 1.58·67-s − 0.712·71-s − 0.468·73-s + 0.225·79-s + 81-s + 0.658·83-s + 0.759·85-s − 1.05·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 148720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 148720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(148720\)    =    \(2^{4} \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1187.53\)
Root analytic conductor: \(34.4606\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 148720,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
11 \( 1 - T \)
13 \( 1 \)
good3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 + p T^{2} \) 1.7.a
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 9 T + p T^{2} \) 1.37.j
41 \( 1 + T + p T^{2} \) 1.41.b
43 \( 1 - 9 T + p T^{2} \) 1.43.aj
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.73986969860516, −13.00517755428784, −12.66877342864618, −12.16519766419069, −11.49908341104463, −11.19546203621750, −11.01614835514328, −10.28714677309226, −9.627926137649797, −9.209942271635401, −8.688765656453644, −8.410991021141977, −7.679629611333311, −7.357055034422174, −6.601712335012140, −6.262162424801548, −5.735905629498103, −5.024207981014477, −4.604038685708915, −4.026835552762161, −3.286435796124033, −3.058491236004755, −1.972320876668814, −1.858396922007205, −0.5940652387542984, 0, 0.5940652387542984, 1.858396922007205, 1.972320876668814, 3.058491236004755, 3.286435796124033, 4.026835552762161, 4.604038685708915, 5.024207981014477, 5.735905629498103, 6.262162424801548, 6.601712335012140, 7.357055034422174, 7.679629611333311, 8.410991021141977, 8.688765656453644, 9.209942271635401, 9.627926137649797, 10.28714677309226, 11.01614835514328, 11.19546203621750, 11.49908341104463, 12.16519766419069, 12.66877342864618, 13.00517755428784, 13.73986969860516

Graph of the $Z$-function along the critical line