Properties

Label 2-14784-1.1-c1-0-15
Degree $2$
Conductor $14784$
Sign $1$
Analytic cond. $118.050$
Root an. cond. $10.8651$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 7-s + 9-s − 11-s + 2·13-s + 4·17-s + 6·19-s − 21-s − 4·23-s − 5·25-s − 27-s + 2·29-s + 10·31-s + 33-s + 6·37-s − 2·39-s − 12·41-s + 12·43-s − 6·47-s + 49-s − 4·51-s + 6·53-s − 6·57-s − 6·61-s + 63-s + 4·67-s + 4·69-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.377·7-s + 1/3·9-s − 0.301·11-s + 0.554·13-s + 0.970·17-s + 1.37·19-s − 0.218·21-s − 0.834·23-s − 25-s − 0.192·27-s + 0.371·29-s + 1.79·31-s + 0.174·33-s + 0.986·37-s − 0.320·39-s − 1.87·41-s + 1.82·43-s − 0.875·47-s + 1/7·49-s − 0.560·51-s + 0.824·53-s − 0.794·57-s − 0.768·61-s + 0.125·63-s + 0.488·67-s + 0.481·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14784 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14784\)    =    \(2^{6} \cdot 3 \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(118.050\)
Root analytic conductor: \(10.8651\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 14784,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.064088911\)
\(L(\frac12)\) \(\approx\) \(2.064088911\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 - T \)
11 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.22209569415424, −15.50367729572972, −15.18276075829249, −14.26654528525281, −13.74231026533259, −13.50639295484384, −12.55473213156080, −11.94593529087888, −11.73976886768592, −11.06348979922569, −10.30620378486494, −9.933958623045640, −9.367883671097311, −8.427152410109727, −7.865286102090435, −7.520595719147124, −6.527672569301408, −6.034054624795884, −5.391819897061849, −4.829521198474102, −4.020143909294133, −3.326495175911349, −2.446982491791807, −1.421606706019449, −0.7094608938093527, 0.7094608938093527, 1.421606706019449, 2.446982491791807, 3.326495175911349, 4.020143909294133, 4.829521198474102, 5.391819897061849, 6.034054624795884, 6.527672569301408, 7.520595719147124, 7.865286102090435, 8.427152410109727, 9.367883671097311, 9.933958623045640, 10.30620378486494, 11.06348979922569, 11.73976886768592, 11.94593529087888, 12.55473213156080, 13.50639295484384, 13.74231026533259, 14.26654528525281, 15.18276075829249, 15.50367729572972, 16.22209569415424

Graph of the $Z$-function along the critical line