Properties

Label 2-1472-1.1-c1-0-20
Degree $2$
Conductor $1472$
Sign $1$
Analytic cond. $11.7539$
Root an. cond. $3.42840$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 2·5-s − 4·7-s + 6·9-s − 2·11-s + 5·13-s + 6·15-s + 4·17-s + 2·19-s − 12·21-s + 23-s − 25-s + 9·27-s + 7·29-s − 3·31-s − 6·33-s − 8·35-s − 2·37-s + 15·39-s − 9·41-s + 8·43-s + 12·45-s + 9·47-s + 9·49-s + 12·51-s − 2·53-s − 4·55-s + ⋯
L(s)  = 1  + 1.73·3-s + 0.894·5-s − 1.51·7-s + 2·9-s − 0.603·11-s + 1.38·13-s + 1.54·15-s + 0.970·17-s + 0.458·19-s − 2.61·21-s + 0.208·23-s − 1/5·25-s + 1.73·27-s + 1.29·29-s − 0.538·31-s − 1.04·33-s − 1.35·35-s − 0.328·37-s + 2.40·39-s − 1.40·41-s + 1.21·43-s + 1.78·45-s + 1.31·47-s + 9/7·49-s + 1.68·51-s − 0.274·53-s − 0.539·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1472\)    =    \(2^{6} \cdot 23\)
Sign: $1$
Analytic conductor: \(11.7539\)
Root analytic conductor: \(3.42840\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1472,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.328413675\)
\(L(\frac12)\) \(\approx\) \(3.328413675\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
23 \( 1 - T \)
good3 \( 1 - p T + p T^{2} \) 1.3.ad
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
29 \( 1 - 7 T + p T^{2} \) 1.29.ah
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 + 3 T + p T^{2} \) 1.73.d
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.329484681401310670308265163855, −8.902069120921913079823685276690, −8.046180103929811076438808036308, −7.20276326639128304407472806256, −6.30739888458901592854412022981, −5.52266446656413560027397663397, −3.99096260128289979003484172303, −3.21402252057952047529474757459, −2.65858804857211710860724509971, −1.38511650780934413670188743730, 1.38511650780934413670188743730, 2.65858804857211710860724509971, 3.21402252057952047529474757459, 3.99096260128289979003484172303, 5.52266446656413560027397663397, 6.30739888458901592854412022981, 7.20276326639128304407472806256, 8.046180103929811076438808036308, 8.902069120921913079823685276690, 9.329484681401310670308265163855

Graph of the $Z$-function along the critical line