Properties

Label 2-142296-1.1-c1-0-40
Degree $2$
Conductor $142296$
Sign $-1$
Analytic cond. $1136.23$
Root an. cond. $33.7081$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s + 9-s − 2·13-s + 2·15-s − 4·17-s + 4·19-s − 6·23-s − 25-s − 27-s + 2·29-s + 2·31-s + 2·37-s + 2·39-s − 6·43-s − 2·45-s + 12·47-s + 4·51-s − 4·57-s + 12·59-s + 2·61-s + 4·65-s + 4·67-s + 6·69-s − 6·71-s − 10·73-s + 75-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s + 1/3·9-s − 0.554·13-s + 0.516·15-s − 0.970·17-s + 0.917·19-s − 1.25·23-s − 1/5·25-s − 0.192·27-s + 0.371·29-s + 0.359·31-s + 0.328·37-s + 0.320·39-s − 0.914·43-s − 0.298·45-s + 1.75·47-s + 0.560·51-s − 0.529·57-s + 1.56·59-s + 0.256·61-s + 0.496·65-s + 0.488·67-s + 0.722·69-s − 0.712·71-s − 1.17·73-s + 0.115·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 142296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 142296 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(142296\)    =    \(2^{3} \cdot 3 \cdot 7^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(1136.23\)
Root analytic conductor: \(33.7081\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 142296,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
11 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.59266244486135, −13.12558918497898, −12.56836080212151, −12.01242565870503, −11.71720566186855, −11.46454405424459, −10.83346704187273, −10.21456514648210, −9.932170719456858, −9.379877587937633, −8.573042102975590, −8.406695531634558, −7.585627862696765, −7.326273968473079, −6.854158371884638, −6.122521401982794, −5.762364939958603, −5.080170354695411, −4.555595313061634, −4.068549849442699, −3.645334649519116, −2.795623001148168, −2.270899109110398, −1.469357243359997, −0.6366507680496054, 0, 0.6366507680496054, 1.469357243359997, 2.270899109110398, 2.795623001148168, 3.645334649519116, 4.068549849442699, 4.555595313061634, 5.080170354695411, 5.762364939958603, 6.122521401982794, 6.854158371884638, 7.326273968473079, 7.585627862696765, 8.406695531634558, 8.573042102975590, 9.379877587937633, 9.932170719456858, 10.21456514648210, 10.83346704187273, 11.46454405424459, 11.71720566186855, 12.01242565870503, 12.56836080212151, 13.12558918497898, 13.59266244486135

Graph of the $Z$-function along the critical line