Properties

Label 2-132800-1.1-c1-0-3
Degree $2$
Conductor $132800$
Sign $1$
Analytic cond. $1060.41$
Root an. cond. $32.5639$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 3·7-s − 2·9-s + 5·11-s + 2·13-s − 3·17-s + 6·19-s − 3·21-s − 8·23-s − 5·27-s − 9·29-s + 9·31-s + 5·33-s − 9·37-s + 2·39-s − 10·41-s + 6·43-s − 6·47-s + 2·49-s − 3·51-s − 2·53-s + 6·57-s − 59-s + 7·61-s + 6·63-s − 8·67-s − 8·69-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.13·7-s − 2/3·9-s + 1.50·11-s + 0.554·13-s − 0.727·17-s + 1.37·19-s − 0.654·21-s − 1.66·23-s − 0.962·27-s − 1.67·29-s + 1.61·31-s + 0.870·33-s − 1.47·37-s + 0.320·39-s − 1.56·41-s + 0.914·43-s − 0.875·47-s + 2/7·49-s − 0.420·51-s − 0.274·53-s + 0.794·57-s − 0.130·59-s + 0.896·61-s + 0.755·63-s − 0.977·67-s − 0.963·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 132800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 132800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(132800\)    =    \(2^{6} \cdot 5^{2} \cdot 83\)
Sign: $1$
Analytic conductor: \(1060.41\)
Root analytic conductor: \(32.5639\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 132800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.402408356\)
\(L(\frac12)\) \(\approx\) \(1.402408356\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
83 \( 1 + T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 - 9 T + p T^{2} \) 1.31.aj
37 \( 1 + 9 T + p T^{2} \) 1.37.j
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + T + p T^{2} \) 1.59.b
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.59161849227157, −13.22364325114709, −12.24124356999730, −12.19842642471623, −11.52363274020444, −11.25167733755715, −10.49603300248995, −9.849209635971089, −9.495904483823332, −9.235750505606919, −8.575210125530686, −8.219058316963005, −7.632065639176828, −6.883528008978711, −6.533148572130683, −6.127573221124098, −5.536250912492188, −4.946115047389484, −3.927060031694201, −3.756636558045070, −3.313498741949341, −2.634522034050529, −1.918174690837218, −1.336670990974002, −0.3369945234773998, 0.3369945234773998, 1.336670990974002, 1.918174690837218, 2.634522034050529, 3.313498741949341, 3.756636558045070, 3.927060031694201, 4.946115047389484, 5.536250912492188, 6.127573221124098, 6.533148572130683, 6.883528008978711, 7.632065639176828, 8.219058316963005, 8.575210125530686, 9.235750505606919, 9.495904483823332, 9.849209635971089, 10.49603300248995, 11.25167733755715, 11.52363274020444, 12.19842642471623, 12.24124356999730, 13.22364325114709, 13.59161849227157

Graph of the $Z$-function along the critical line