Properties

Label 2-132800-1.1-c1-0-29
Degree $2$
Conductor $132800$
Sign $-1$
Analytic cond. $1060.41$
Root an. cond. $32.5639$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 3·7-s − 2·9-s − 5·11-s − 4·13-s + 2·17-s + 6·19-s − 3·21-s − 3·23-s − 5·27-s − 2·29-s − 5·33-s + 6·37-s − 4·39-s + 7·41-s − 10·43-s − 4·47-s + 2·49-s + 2·51-s − 6·53-s + 6·57-s + 3·59-s + 5·61-s + 6·63-s + 8·67-s − 3·69-s − 8·71-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.13·7-s − 2/3·9-s − 1.50·11-s − 1.10·13-s + 0.485·17-s + 1.37·19-s − 0.654·21-s − 0.625·23-s − 0.962·27-s − 0.371·29-s − 0.870·33-s + 0.986·37-s − 0.640·39-s + 1.09·41-s − 1.52·43-s − 0.583·47-s + 2/7·49-s + 0.280·51-s − 0.824·53-s + 0.794·57-s + 0.390·59-s + 0.640·61-s + 0.755·63-s + 0.977·67-s − 0.361·69-s − 0.949·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 132800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 132800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(132800\)    =    \(2^{6} \cdot 5^{2} \cdot 83\)
Sign: $-1$
Analytic conductor: \(1060.41\)
Root analytic conductor: \(32.5639\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 132800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
83 \( 1 + T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 7 T + p T^{2} \) 1.41.ah
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 8 T + p T^{2} \) 1.79.i
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.67069408875956, −13.15634162728152, −12.89395059758855, −12.36713742043438, −11.79530802131176, −11.36579844622820, −10.79527708511246, −10.03616443051165, −9.725353680759459, −9.633675148482012, −8.859251375734213, −8.162119426369369, −7.907057821999232, −7.391538925521877, −6.935239142333473, −6.146159148516450, −5.690517710913582, −5.238999067841173, −4.725530773783205, −3.860267608625684, −3.249687489185634, −2.878032358711043, −2.500697984844434, −1.754015183531456, −0.6164605175243276, 0, 0.6164605175243276, 1.754015183531456, 2.500697984844434, 2.878032358711043, 3.249687489185634, 3.860267608625684, 4.725530773783205, 5.238999067841173, 5.690517710913582, 6.146159148516450, 6.935239142333473, 7.391538925521877, 7.907057821999232, 8.162119426369369, 8.859251375734213, 9.633675148482012, 9.725353680759459, 10.03616443051165, 10.79527708511246, 11.36579844622820, 11.79530802131176, 12.36713742043438, 12.89395059758855, 13.15634162728152, 13.67069408875956

Graph of the $Z$-function along the critical line