Properties

Label 2-132800-1.1-c1-0-17
Degree $2$
Conductor $132800$
Sign $-1$
Analytic cond. $1060.41$
Root an. cond. $32.5639$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·7-s − 3·9-s − 5·11-s − 2·13-s − 5·17-s − 2·19-s + 3·23-s + 7·29-s − 3·31-s − 11·37-s − 5·41-s − 6·43-s − 4·47-s + 2·49-s + 10·53-s − 12·59-s + 14·61-s + 9·63-s − 2·67-s + 12·71-s + 4·73-s + 15·77-s − 14·79-s + 9·81-s + 83-s − 6·89-s + 6·91-s + ⋯
L(s)  = 1  − 1.13·7-s − 9-s − 1.50·11-s − 0.554·13-s − 1.21·17-s − 0.458·19-s + 0.625·23-s + 1.29·29-s − 0.538·31-s − 1.80·37-s − 0.780·41-s − 0.914·43-s − 0.583·47-s + 2/7·49-s + 1.37·53-s − 1.56·59-s + 1.79·61-s + 1.13·63-s − 0.244·67-s + 1.42·71-s + 0.468·73-s + 1.70·77-s − 1.57·79-s + 81-s + 0.109·83-s − 0.635·89-s + 0.628·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 132800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 132800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(132800\)    =    \(2^{6} \cdot 5^{2} \cdot 83\)
Sign: $-1$
Analytic conductor: \(1060.41\)
Root analytic conductor: \(32.5639\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 132800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
83 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 - 7 T + p T^{2} \) 1.29.ah
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 + 11 T + p T^{2} \) 1.37.l
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 14 T + p T^{2} \) 1.79.o
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.64773423462952, −13.26097064225265, −12.67371182493505, −12.47844312374617, −11.75258202836231, −11.32206638702970, −10.67114811737805, −10.38630758002892, −9.934217858496544, −9.309141544805464, −8.772873127486843, −8.380619590291194, −7.987317317159561, −7.065905765377073, −6.825707900851775, −6.380136130601387, −5.612482887461485, −5.177575634791485, −4.823216205560250, −3.969200598475438, −3.309207300696133, −2.811642957997602, −2.454526522801469, −1.730543120547165, −0.4569066742039636, 0, 0.4569066742039636, 1.730543120547165, 2.454526522801469, 2.811642957997602, 3.309207300696133, 3.969200598475438, 4.823216205560250, 5.177575634791485, 5.612482887461485, 6.380136130601387, 6.825707900851775, 7.065905765377073, 7.987317317159561, 8.380619590291194, 8.772873127486843, 9.309141544805464, 9.934217858496544, 10.38630758002892, 10.67114811737805, 11.32206638702970, 11.75258202836231, 12.47844312374617, 12.67371182493505, 13.26097064225265, 13.64773423462952

Graph of the $Z$-function along the critical line