Properties

Label 2-130050-1.1-c1-0-106
Degree $2$
Conductor $130050$
Sign $-1$
Analytic cond. $1038.45$
Root an. cond. $32.2250$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 3·7-s + 8-s − 13-s − 3·14-s + 16-s − 4·23-s − 26-s − 3·28-s − 4·29-s − 5·31-s + 32-s + 8·37-s − 4·43-s − 4·46-s − 8·47-s + 2·49-s − 52-s − 11·53-s − 3·56-s − 4·58-s − 5·62-s + 64-s + 8·67-s + 15·71-s − 4·73-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 1.13·7-s + 0.353·8-s − 0.277·13-s − 0.801·14-s + 1/4·16-s − 0.834·23-s − 0.196·26-s − 0.566·28-s − 0.742·29-s − 0.898·31-s + 0.176·32-s + 1.31·37-s − 0.609·43-s − 0.589·46-s − 1.16·47-s + 2/7·49-s − 0.138·52-s − 1.51·53-s − 0.400·56-s − 0.525·58-s − 0.635·62-s + 1/8·64-s + 0.977·67-s + 1.78·71-s − 0.468·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 130050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 130050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(130050\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(1038.45\)
Root analytic conductor: \(32.2250\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 130050,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 \)
17 \( 1 \)
good7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + T + p T^{2} \) 1.13.b
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 11 T + p T^{2} \) 1.53.l
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 11 T + p T^{2} \) 1.79.al
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.66846935621239, −13.09646707107380, −12.84294800677749, −12.47817777897604, −11.89676255467486, −11.26244021628570, −11.09629117236419, −10.23950705686353, −9.914975513384974, −9.421528920409081, −9.029172681327205, −8.145480807699950, −7.793717755906989, −7.253737183409520, −6.480833319748516, −6.395721056643515, −5.766202673945584, −5.148401298841325, −4.661894538481387, −3.972838784770349, −3.396285442605456, −3.161462666678121, −2.198956430285134, −1.897163411969470, −0.7907733138332456, 0, 0.7907733138332456, 1.897163411969470, 2.198956430285134, 3.161462666678121, 3.396285442605456, 3.972838784770349, 4.661894538481387, 5.148401298841325, 5.766202673945584, 6.395721056643515, 6.480833319748516, 7.253737183409520, 7.793717755906989, 8.145480807699950, 9.029172681327205, 9.421528920409081, 9.914975513384974, 10.23950705686353, 11.09629117236419, 11.26244021628570, 11.89676255467486, 12.47817777897604, 12.84294800677749, 13.09646707107380, 13.66846935621239

Graph of the $Z$-function along the critical line