Properties

Label 2-126126-1.1-c1-0-140
Degree $2$
Conductor $126126$
Sign $-1$
Analytic cond. $1007.12$
Root an. cond. $31.7351$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 2·5-s + 8-s + 2·10-s − 11-s + 13-s + 16-s − 2·17-s + 2·20-s − 22-s + 4·23-s − 25-s + 26-s − 2·29-s + 32-s − 2·34-s − 2·37-s + 2·40-s + 6·41-s + 8·43-s − 44-s + 4·46-s − 12·47-s − 50-s + 52-s − 2·53-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.894·5-s + 0.353·8-s + 0.632·10-s − 0.301·11-s + 0.277·13-s + 1/4·16-s − 0.485·17-s + 0.447·20-s − 0.213·22-s + 0.834·23-s − 1/5·25-s + 0.196·26-s − 0.371·29-s + 0.176·32-s − 0.342·34-s − 0.328·37-s + 0.316·40-s + 0.937·41-s + 1.21·43-s − 0.150·44-s + 0.589·46-s − 1.75·47-s − 0.141·50-s + 0.138·52-s − 0.274·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 126126 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 126126 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(126126\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \cdot 13\)
Sign: $-1$
Analytic conductor: \(1007.12\)
Root analytic conductor: \(31.7351\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 126126,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
13 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.59031432265879, −13.25324495918780, −13.00956732565786, −12.48257661281627, −11.81676983879774, −11.39477257267909, −10.89042727975455, −10.44908893364755, −9.961874864813859, −9.339971252687751, −9.011470084689479, −8.351213278419578, −7.758454864659506, −7.196711639557166, −6.742558094941666, −6.090879146376830, −5.750592974788999, −5.308653714160732, −4.531959209173892, −4.294094142728290, −3.371250731529626, −2.948519856965470, −2.283967742806143, −1.734149272215953, −1.084239440057077, 0, 1.084239440057077, 1.734149272215953, 2.283967742806143, 2.948519856965470, 3.371250731529626, 4.294094142728290, 4.531959209173892, 5.308653714160732, 5.750592974788999, 6.090879146376830, 6.742558094941666, 7.196711639557166, 7.758454864659506, 8.351213278419578, 9.011470084689479, 9.339971252687751, 9.961874864813859, 10.44908893364755, 10.89042727975455, 11.39477257267909, 11.81676983879774, 12.48257661281627, 13.00956732565786, 13.25324495918780, 13.59031432265879

Graph of the $Z$-function along the critical line