Properties

Label 2-124950-1.1-c1-0-130
Degree $2$
Conductor $124950$
Sign $-1$
Analytic cond. $997.730$
Root an. cond. $31.5868$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 6-s − 8-s + 9-s + 2·11-s + 12-s − 7·13-s + 16-s − 17-s − 18-s − 2·22-s + 4·23-s − 24-s + 7·26-s + 27-s − 4·29-s − 4·31-s − 32-s + 2·33-s + 34-s + 36-s + 4·37-s − 7·39-s − 6·41-s − 43-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s − 0.353·8-s + 1/3·9-s + 0.603·11-s + 0.288·12-s − 1.94·13-s + 1/4·16-s − 0.242·17-s − 0.235·18-s − 0.426·22-s + 0.834·23-s − 0.204·24-s + 1.37·26-s + 0.192·27-s − 0.742·29-s − 0.718·31-s − 0.176·32-s + 0.348·33-s + 0.171·34-s + 1/6·36-s + 0.657·37-s − 1.12·39-s − 0.937·41-s − 0.152·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 124950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 124950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(124950\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(997.730\)
Root analytic conductor: \(31.5868\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 124950,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
17 \( 1 + T \)
good11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 7 T + p T^{2} \) 1.13.h
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - T + p T^{2} \) 1.73.ab
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 - 3 T + p T^{2} \) 1.97.ad
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.90174303992400, −13.13951569507145, −12.82653622748112, −12.27321755342726, −11.83878016206019, −11.29494008730175, −10.82869114489043, −10.22777147927876, −9.707943656106872, −9.348460293591275, −9.080685282980637, −8.367861068454670, −7.832249138725714, −7.485610626638464, −6.820140949584467, −6.682404981954779, −5.763960032378894, −5.159130863351742, −4.652347162095883, −4.048700864618662, −3.211637870293409, −2.915625355114021, −2.007809176559561, −1.807833312054930, −0.7818603722463423, 0, 0.7818603722463423, 1.807833312054930, 2.007809176559561, 2.915625355114021, 3.211637870293409, 4.048700864618662, 4.652347162095883, 5.159130863351742, 5.763960032378894, 6.682404981954779, 6.820140949584467, 7.485610626638464, 7.832249138725714, 8.367861068454670, 9.080685282980637, 9.348460293591275, 9.707943656106872, 10.22777147927876, 10.82869114489043, 11.29494008730175, 11.83878016206019, 12.27321755342726, 12.82653622748112, 13.13951569507145, 13.90174303992400

Graph of the $Z$-function along the critical line