Properties

Label 2-124950-1.1-c1-0-113
Degree $2$
Conductor $124950$
Sign $-1$
Analytic cond. $997.730$
Root an. cond. $31.5868$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 8-s + 9-s + 2·11-s − 12-s − 3·13-s + 16-s − 17-s − 18-s + 2·19-s − 2·22-s − 2·23-s + 24-s + 3·26-s − 27-s + 8·29-s − 10·31-s − 32-s − 2·33-s + 34-s + 36-s − 12·37-s − 2·38-s + 3·39-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.353·8-s + 1/3·9-s + 0.603·11-s − 0.288·12-s − 0.832·13-s + 1/4·16-s − 0.242·17-s − 0.235·18-s + 0.458·19-s − 0.426·22-s − 0.417·23-s + 0.204·24-s + 0.588·26-s − 0.192·27-s + 1.48·29-s − 1.79·31-s − 0.176·32-s − 0.348·33-s + 0.171·34-s + 1/6·36-s − 1.97·37-s − 0.324·38-s + 0.480·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 124950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 124950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(124950\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(997.730\)
Root analytic conductor: \(31.5868\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 124950,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
17 \( 1 + T \)
good11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 3 T + p T^{2} \) 1.13.d
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 12 T + p T^{2} \) 1.37.m
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 9 T + p T^{2} \) 1.43.j
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 3 T + p T^{2} \) 1.61.d
67 \( 1 - 9 T + p T^{2} \) 1.67.aj
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 9 T + p T^{2} \) 1.73.j
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 17 T + p T^{2} \) 1.97.ar
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.81566499058857, −13.20977157611828, −12.56542409548795, −12.22961326195683, −11.77147106858269, −11.43310809637025, −10.72478876957337, −10.36147337439141, −9.994831582777652, −9.308441149358720, −8.991711562878129, −8.468136361337289, −7.798462718584817, −7.249525653630664, −6.950502910384521, −6.413043933484066, −5.755410316285015, −5.318648047450755, −4.725849448574083, −4.065218841697142, −3.484656298301802, −2.766972122336809, −2.057673744474393, −1.509261550500343, −0.7257814366571887, 0, 0.7257814366571887, 1.509261550500343, 2.057673744474393, 2.766972122336809, 3.484656298301802, 4.065218841697142, 4.725849448574083, 5.318648047450755, 5.755410316285015, 6.413043933484066, 6.950502910384521, 7.249525653630664, 7.798462718584817, 8.468136361337289, 8.991711562878129, 9.308441149358720, 9.994831582777652, 10.36147337439141, 10.72478876957337, 11.43310809637025, 11.77147106858269, 12.22961326195683, 12.56542409548795, 13.20977157611828, 13.81566499058857

Graph of the $Z$-function along the critical line