Properties

Label 2-1248-1.1-c1-0-7
Degree $2$
Conductor $1248$
Sign $1$
Analytic cond. $9.96533$
Root an. cond. $3.15679$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·7-s + 9-s + 13-s + 2·17-s − 2·19-s + 2·21-s + 8·23-s − 5·25-s + 27-s + 6·29-s + 2·31-s − 6·37-s + 39-s + 4·43-s + 8·47-s − 3·49-s + 2·51-s − 6·53-s − 2·57-s + 4·59-s + 2·61-s + 2·63-s + 2·67-s + 8·69-s + 4·71-s − 2·73-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.755·7-s + 1/3·9-s + 0.277·13-s + 0.485·17-s − 0.458·19-s + 0.436·21-s + 1.66·23-s − 25-s + 0.192·27-s + 1.11·29-s + 0.359·31-s − 0.986·37-s + 0.160·39-s + 0.609·43-s + 1.16·47-s − 3/7·49-s + 0.280·51-s − 0.824·53-s − 0.264·57-s + 0.520·59-s + 0.256·61-s + 0.251·63-s + 0.244·67-s + 0.963·69-s + 0.474·71-s − 0.234·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1248 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1248\)    =    \(2^{5} \cdot 3 \cdot 13\)
Sign: $1$
Analytic conductor: \(9.96533\)
Root analytic conductor: \(3.15679\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{1248} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1248,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.308753302\)
\(L(\frac12)\) \(\approx\) \(2.308753302\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
13 \( 1 - T \)
good5 \( 1 + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 - 4 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 - 12 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 - 12 T + p T^{2} \)
97 \( 1 + 18 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.614324717724064020306346133933, −8.772746136966357733511362932357, −8.170210140292499884928170378646, −7.37444340174235339103368042805, −6.48798103863965861426704983959, −5.36708441859909895042575363132, −4.53138639637399252599647393052, −3.51100966248523097859158706461, −2.43766757243998842407464205467, −1.21909654633704707619269809337, 1.21909654633704707619269809337, 2.43766757243998842407464205467, 3.51100966248523097859158706461, 4.53138639637399252599647393052, 5.36708441859909895042575363132, 6.48798103863965861426704983959, 7.37444340174235339103368042805, 8.170210140292499884928170378646, 8.772746136966357733511362932357, 9.614324717724064020306346133933

Graph of the $Z$-function along the critical line