| L(s)  = 1 | − 5-s     + 4·7-s             − 6·13-s         + 6·17-s     + 4·19-s             + 25-s         + 2·29-s     + 8·31-s         − 4·35-s     − 10·37-s         + 6·41-s     + 43-s         − 8·47-s     + 9·49-s         − 6·53-s                 − 10·61-s         + 6·65-s     + 4·67-s         − 8·71-s     − 6·73-s                     + 16·83-s     − 6·85-s         − 6·89-s     − 24·91-s         − 4·95-s     + 2·97-s         + 101-s  + ⋯ | 
| L(s)  = 1 | − 0.447·5-s     + 1.51·7-s             − 1.66·13-s         + 1.45·17-s     + 0.917·19-s             + 1/5·25-s         + 0.371·29-s     + 1.43·31-s         − 0.676·35-s     − 1.64·37-s         + 0.937·41-s     + 0.152·43-s         − 1.16·47-s     + 9/7·49-s         − 0.824·53-s                 − 1.28·61-s         + 0.744·65-s     + 0.488·67-s         − 0.949·71-s     − 0.702·73-s                     + 1.75·83-s     − 0.650·85-s         − 0.635·89-s     − 2.51·91-s         − 0.410·95-s     + 0.203·97-s         + 0.0995·101-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 123840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 123840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(=\) | \(0\) | 
    
      | \(L(\frac12)\) | \(=\) | \(0\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 \) |  | 
|  | 3 | \( 1 \) |  | 
|  | 5 | \( 1 + T \) |  | 
|  | 43 | \( 1 - T \) |  | 
| good | 7 | \( 1 - 4 T + p T^{2} \) | 1.7.ae | 
|  | 11 | \( 1 + p T^{2} \) | 1.11.a | 
|  | 13 | \( 1 + 6 T + p T^{2} \) | 1.13.g | 
|  | 17 | \( 1 - 6 T + p T^{2} \) | 1.17.ag | 
|  | 19 | \( 1 - 4 T + p T^{2} \) | 1.19.ae | 
|  | 23 | \( 1 + p T^{2} \) | 1.23.a | 
|  | 29 | \( 1 - 2 T + p T^{2} \) | 1.29.ac | 
|  | 31 | \( 1 - 8 T + p T^{2} \) | 1.31.ai | 
|  | 37 | \( 1 + 10 T + p T^{2} \) | 1.37.k | 
|  | 41 | \( 1 - 6 T + p T^{2} \) | 1.41.ag | 
|  | 47 | \( 1 + 8 T + p T^{2} \) | 1.47.i | 
|  | 53 | \( 1 + 6 T + p T^{2} \) | 1.53.g | 
|  | 59 | \( 1 + p T^{2} \) | 1.59.a | 
|  | 61 | \( 1 + 10 T + p T^{2} \) | 1.61.k | 
|  | 67 | \( 1 - 4 T + p T^{2} \) | 1.67.ae | 
|  | 71 | \( 1 + 8 T + p T^{2} \) | 1.71.i | 
|  | 73 | \( 1 + 6 T + p T^{2} \) | 1.73.g | 
|  | 79 | \( 1 + p T^{2} \) | 1.79.a | 
|  | 83 | \( 1 - 16 T + p T^{2} \) | 1.83.aq | 
|  | 89 | \( 1 + 6 T + p T^{2} \) | 1.89.g | 
|  | 97 | \( 1 - 2 T + p T^{2} \) | 1.97.ac | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−13.98274101162400, −13.40444703566513, −12.55190861064759, −12.22777119797404, −11.74665441707969, −11.69339527391861, −10.77887154149647, −10.50466355197341, −9.815575611006249, −9.544607393996751, −8.807916057345525, −8.122407450037948, −7.944734513632575, −7.422562902280014, −7.080777026832181, −6.274709465352690, −5.566845124689949, −5.037022315955983, −4.793830713463864, −4.259960158860800, −3.373414432270525, −2.945131301749858, −2.237863438085264, −1.480726187129530, −0.9900802452588899, 0, 
0.9900802452588899, 1.480726187129530, 2.237863438085264, 2.945131301749858, 3.373414432270525, 4.259960158860800, 4.793830713463864, 5.037022315955983, 5.566845124689949, 6.274709465352690, 7.080777026832181, 7.422562902280014, 7.944734513632575, 8.122407450037948, 8.807916057345525, 9.544607393996751, 9.815575611006249, 10.50466355197341, 10.77887154149647, 11.69339527391861, 11.74665441707969, 12.22777119797404, 12.55190861064759, 13.40444703566513, 13.98274101162400
