Properties

Label 2-123840-1.1-c1-0-126
Degree $2$
Conductor $123840$
Sign $-1$
Analytic cond. $988.867$
Root an. cond. $31.4462$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 2·7-s + 2·11-s − 2·13-s + 4·23-s + 25-s − 6·29-s + 4·31-s + 2·35-s − 8·37-s − 8·41-s + 43-s − 4·47-s − 3·49-s − 2·53-s + 2·55-s + 2·59-s + 8·61-s − 2·65-s + 12·67-s + 8·71-s − 2·73-s + 4·77-s − 8·79-s − 6·83-s + 6·89-s − 4·91-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.755·7-s + 0.603·11-s − 0.554·13-s + 0.834·23-s + 1/5·25-s − 1.11·29-s + 0.718·31-s + 0.338·35-s − 1.31·37-s − 1.24·41-s + 0.152·43-s − 0.583·47-s − 3/7·49-s − 0.274·53-s + 0.269·55-s + 0.260·59-s + 1.02·61-s − 0.248·65-s + 1.46·67-s + 0.949·71-s − 0.234·73-s + 0.455·77-s − 0.900·79-s − 0.658·83-s + 0.635·89-s − 0.419·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 123840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 123840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(123840\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 43\)
Sign: $-1$
Analytic conductor: \(988.867\)
Root analytic conductor: \(31.4462\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 123840,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
43 \( 1 - T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 8 T + p T^{2} \) 1.41.i
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.83788860567732, −13.26446463115097, −12.89070474307390, −12.26257701803586, −11.87111449029865, −11.26217043206898, −11.04661228263248, −10.33386027317540, −9.837379250309378, −9.471014451889736, −8.867581510761985, −8.360172750775951, −8.003586512126080, −7.194997213167538, −6.863009702550833, −6.422657417032790, −5.540602837717206, −5.261897535790929, −4.754663233961795, −4.104792836301411, −3.485759211275005, −2.883694425166732, −2.092173962910292, −1.659796979108062, −0.9862334735061494, 0, 0.9862334735061494, 1.659796979108062, 2.092173962910292, 2.883694425166732, 3.485759211275005, 4.104792836301411, 4.754663233961795, 5.261897535790929, 5.540602837717206, 6.422657417032790, 6.863009702550833, 7.194997213167538, 8.003586512126080, 8.360172750775951, 8.867581510761985, 9.471014451889736, 9.837379250309378, 10.33386027317540, 11.04661228263248, 11.26217043206898, 11.87111449029865, 12.26257701803586, 12.89070474307390, 13.26446463115097, 13.83788860567732

Graph of the $Z$-function along the critical line