Properties

Label 2-11616-1.1-c1-0-8
Degree $2$
Conductor $11616$
Sign $1$
Analytic cond. $92.7542$
Root an. cond. $9.63089$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 2·7-s + 9-s − 13-s − 15-s − 5·17-s + 8·19-s + 2·21-s + 6·23-s − 4·25-s + 27-s − 3·29-s + 4·31-s − 2·35-s − 11·37-s − 39-s + 3·41-s − 2·43-s − 45-s + 4·47-s − 3·49-s − 5·51-s + 3·53-s + 8·57-s + 6·59-s + 10·61-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 0.755·7-s + 1/3·9-s − 0.277·13-s − 0.258·15-s − 1.21·17-s + 1.83·19-s + 0.436·21-s + 1.25·23-s − 4/5·25-s + 0.192·27-s − 0.557·29-s + 0.718·31-s − 0.338·35-s − 1.80·37-s − 0.160·39-s + 0.468·41-s − 0.304·43-s − 0.149·45-s + 0.583·47-s − 3/7·49-s − 0.700·51-s + 0.412·53-s + 1.05·57-s + 0.781·59-s + 1.28·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11616\)    =    \(2^{5} \cdot 3 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(92.7542\)
Root analytic conductor: \(9.63089\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 11616,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.677624979\)
\(L(\frac12)\) \(\approx\) \(2.677624979\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 \)
good5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 11 T + p T^{2} \) 1.37.l
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 13 T + p T^{2} \) 1.89.an
97 \( 1 + 9 T + p T^{2} \) 1.97.j
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.25373587616659, −15.66167868152343, −15.40115380333986, −14.69657214024130, −14.20203940987783, −13.54289522107157, −13.24236719439202, −12.32674605162263, −11.77232248273527, −11.31372031412399, −10.72287678013556, −9.930113522055265, −9.346013371008182, −8.730945400940516, −8.220772242421927, −7.414837750267667, −7.196684352440457, −6.312400673402291, −5.171434647833054, −4.991265339972027, −3.981687651362406, −3.414656624561270, −2.531242104817478, −1.757140616114861, −0.7409349410587745, 0.7409349410587745, 1.757140616114861, 2.531242104817478, 3.414656624561270, 3.981687651362406, 4.991265339972027, 5.171434647833054, 6.312400673402291, 7.196684352440457, 7.414837750267667, 8.220772242421927, 8.730945400940516, 9.346013371008182, 9.930113522055265, 10.72287678013556, 11.31372031412399, 11.77232248273527, 12.32674605162263, 13.24236719439202, 13.54289522107157, 14.20203940987783, 14.69657214024130, 15.40115380333986, 15.66167868152343, 16.25373587616659

Graph of the $Z$-function along the critical line