Properties

Label 2-112632-1.1-c1-0-6
Degree $2$
Conductor $112632$
Sign $-1$
Analytic cond. $899.371$
Root an. cond. $29.9895$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4·5-s − 4·7-s + 9-s − 2·11-s + 13-s + 4·15-s − 6·17-s + 4·21-s + 4·23-s + 11·25-s − 27-s + 6·29-s − 8·31-s + 2·33-s + 16·35-s + 10·37-s − 39-s + 4·41-s − 4·43-s − 4·45-s − 6·47-s + 9·49-s + 6·51-s − 6·53-s + 8·55-s + 6·59-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.78·5-s − 1.51·7-s + 1/3·9-s − 0.603·11-s + 0.277·13-s + 1.03·15-s − 1.45·17-s + 0.872·21-s + 0.834·23-s + 11/5·25-s − 0.192·27-s + 1.11·29-s − 1.43·31-s + 0.348·33-s + 2.70·35-s + 1.64·37-s − 0.160·39-s + 0.624·41-s − 0.609·43-s − 0.596·45-s − 0.875·47-s + 9/7·49-s + 0.840·51-s − 0.824·53-s + 1.07·55-s + 0.781·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 112632 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112632 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(112632\)    =    \(2^{3} \cdot 3 \cdot 13 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(899.371\)
Root analytic conductor: \(29.9895\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 112632,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
13 \( 1 - T \)
19 \( 1 \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 10 T + p T^{2} \) 1.83.k
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.61965595104171, −13.15447384539823, −12.85451498344814, −12.49626437165865, −11.93076381278035, −11.33715101583635, −11.07035755420482, −10.67137736518836, −10.03237760147867, −9.410813592343137, −8.978548266049624, −8.387772317182426, −7.900992891045372, −7.286713201631779, −6.851372540541041, −6.518819829607956, −5.887791793296656, −5.192688504082662, −4.454864708344456, −4.253457065829525, −3.534074146837391, −2.988146156231579, −2.577557683400409, −1.356720496586053, −0.4647173418207874, 0, 0.4647173418207874, 1.356720496586053, 2.577557683400409, 2.988146156231579, 3.534074146837391, 4.253457065829525, 4.454864708344456, 5.192688504082662, 5.887791793296656, 6.518819829607956, 6.851372540541041, 7.286713201631779, 7.900992891045372, 8.387772317182426, 8.978548266049624, 9.410813592343137, 10.03237760147867, 10.67137736518836, 11.07035755420482, 11.33715101583635, 11.93076381278035, 12.49626437165865, 12.85451498344814, 13.15447384539823, 13.61965595104171

Graph of the $Z$-function along the critical line