Properties

Label 2-10710-1.1-c1-0-13
Degree $2$
Conductor $10710$
Sign $1$
Analytic cond. $85.5197$
Root an. cond. $9.24769$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s − 7-s + 8-s − 10-s + 4·11-s + 6·13-s − 14-s + 16-s + 17-s − 4·19-s − 20-s + 4·22-s + 8·23-s + 25-s + 6·26-s − 28-s + 2·29-s + 32-s + 34-s + 35-s − 6·37-s − 4·38-s − 40-s + 6·41-s + 4·44-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.377·7-s + 0.353·8-s − 0.316·10-s + 1.20·11-s + 1.66·13-s − 0.267·14-s + 1/4·16-s + 0.242·17-s − 0.917·19-s − 0.223·20-s + 0.852·22-s + 1.66·23-s + 1/5·25-s + 1.17·26-s − 0.188·28-s + 0.371·29-s + 0.176·32-s + 0.171·34-s + 0.169·35-s − 0.986·37-s − 0.648·38-s − 0.158·40-s + 0.937·41-s + 0.603·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10710 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10710 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10710\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(85.5197\)
Root analytic conductor: \(9.24769\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 10710,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.799411379\)
\(L(\frac12)\) \(\approx\) \(3.799411379\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 + T \)
17 \( 1 - T \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.44726130839512, −15.82598320939882, −15.42721904654370, −14.80553192284660, −14.24428479946112, −13.68398104578439, −13.09609074150407, −12.54035284792863, −12.04762469288605, −11.26618598141434, −10.94109093765409, −10.36735384469233, −9.297105497397079, −8.891112809615830, −8.296556420102253, −7.399062186066743, −6.726992916480250, −6.297408716793171, −5.663961349999494, −4.707265770505789, −4.067861444950118, −3.511965855943750, −2.877498223398498, −1.652211111357431, −0.8750428892125403, 0.8750428892125403, 1.652211111357431, 2.877498223398498, 3.511965855943750, 4.067861444950118, 4.707265770505789, 5.663961349999494, 6.297408716793171, 6.726992916480250, 7.399062186066743, 8.296556420102253, 8.891112809615830, 9.297105497397079, 10.36735384469233, 10.94109093765409, 11.26618598141434, 12.04762469288605, 12.54035284792863, 13.09609074150407, 13.68398104578439, 14.24428479946112, 14.80553192284660, 15.42721904654370, 15.82598320939882, 16.44726130839512

Graph of the $Z$-function along the critical line