Properties

Label 2-103488-1.1-c1-0-134
Degree $2$
Conductor $103488$
Sign $1$
Analytic cond. $826.355$
Root an. cond. $28.7464$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4·5-s + 9-s + 11-s + 4·15-s + 6·17-s + 4·19-s − 6·23-s + 11·25-s + 27-s − 6·29-s + 33-s − 6·37-s + 10·41-s + 8·43-s + 4·45-s − 6·47-s + 6·51-s + 12·53-s + 4·55-s + 4·57-s − 8·59-s + 4·61-s + 12·67-s − 6·69-s + 10·71-s − 2·73-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.78·5-s + 1/3·9-s + 0.301·11-s + 1.03·15-s + 1.45·17-s + 0.917·19-s − 1.25·23-s + 11/5·25-s + 0.192·27-s − 1.11·29-s + 0.174·33-s − 0.986·37-s + 1.56·41-s + 1.21·43-s + 0.596·45-s − 0.875·47-s + 0.840·51-s + 1.64·53-s + 0.539·55-s + 0.529·57-s − 1.04·59-s + 0.512·61-s + 1.46·67-s − 0.722·69-s + 1.18·71-s − 0.234·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 103488 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 103488 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(103488\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(826.355\)
Root analytic conductor: \(28.7464\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 103488,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.478462413\)
\(L(\frac12)\) \(\approx\) \(6.478462413\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
11 \( 1 - T \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.73261574064791, −13.45747570143135, −12.81935813182426, −12.23785159461657, −12.07663761433619, −11.04869133398629, −10.75799502593367, −9.983444108836390, −9.764305461427147, −9.405042780725600, −8.974521431429247, −8.205753100915277, −7.795846354405414, −7.173534519158171, −6.657311467204983, −5.957205019203249, −5.562478675927096, −5.307782559261981, −4.408715737665648, −3.693653799142194, −3.240765371977768, −2.423523082204230, −2.066287885553603, −1.370876068609244, −0.7970849812773346, 0.7970849812773346, 1.370876068609244, 2.066287885553603, 2.423523082204230, 3.240765371977768, 3.693653799142194, 4.408715737665648, 5.307782559261981, 5.562478675927096, 5.957205019203249, 6.657311467204983, 7.173534519158171, 7.795846354405414, 8.205753100915277, 8.974521431429247, 9.405042780725600, 9.764305461427147, 9.983444108836390, 10.75799502593367, 11.04869133398629, 12.07663761433619, 12.23785159461657, 12.81935813182426, 13.45747570143135, 13.73261574064791

Graph of the $Z$-function along the critical line