Label |
Subgroup |
|
Ambient |
|
Quotient |
Name |
Order |
Sylow |
norm |
char |
max |
cent |
cyc |
ab |
nilp |
sup solv |
solv |
perf |
simp |
Agp |
Zgp |
metab |
metacyc |
Name |
Order |
Name |
Size |
max |
cyc |
ab |
nilp |
sup solv |
solv |
simp |
Agp |
metab |
52500000.d.1.a1.a1 |
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
✓ |
✓ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
$C_1$ |
$1$ |
|
✓ |
✓ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
52500000.d.2._.A |
$C_5^7:(C_2\times \GL(3,2))$ |
$2^{4} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
✓ |
✓ |
✓ |
|
|
|
|
|
|
|
|
|
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
$C_2$ |
$2$ |
|
✓ |
✓ |
✓ |
✓ |
✓ |
✓ |
✓ |
✓ |
52500000.d.2._.B |
$C_5^7:\PGL(2,7)$ |
$2^{4} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
✓ |
✓ |
✓ |
|
|
|
|
|
|
|
|
|
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
$C_2$ |
$2$ |
|
✓ |
✓ |
✓ |
✓ |
✓ |
✓ |
✓ |
✓ |
52500000.d.2._.C |
$C_5^7:\PGL(2,7)$ |
$2^{4} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
✓ |
✓ |
✓ |
|
|
|
|
|
|
|
|
|
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
$C_2$ |
$2$ |
|
✓ |
✓ |
✓ |
✓ |
✓ |
✓ |
✓ |
✓ |
52500000.d.4.a1.a1 |
$C_5^7:\GL(3,2)$ |
$2^{3} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
✓ |
✓ |
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
$C_2^2$ |
$2^{2}$ |
|
|
✓ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
52500000.d.8.a1.a1 |
$C_5^7:(C_2\times F_7)$ |
$2^{2} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
|
✓ |
|
|
|
|
|
✓ |
|
|
✓ |
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{3}$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.14.a1.a1 |
$C_5^7:(C_2\times S_4)$ |
$2^{4} \cdot 3 \cdot 5^{7}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2 \cdot 7$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.16._.A |
$C_5\wr F_7$ |
$2 \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
✓ |
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{4}$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.16._.B |
$C_5^7:F_7$ |
$2 \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
✓ |
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{4}$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.16._.C |
$C_5^7:C_7:C_6$ |
$2 \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
✓ |
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{4}$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.21.a1.a1 |
$C_5^7:(C_2\times D_8)$ |
$2^{5} \cdot 5^{7}$ |
|
|
|
✓ |
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$3 \cdot 7$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.24.a1.a1 |
$C_5^7:D_{14}$ |
$2^{2} \cdot 5^{7} \cdot 7$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
✓ |
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{3} \cdot 3$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.28._.A |
$C_5^7:S_4$ |
$2^{3} \cdot 3 \cdot 5^{7}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{2} \cdot 7$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.28._.B |
$C_5^7.A_4.C_2$ |
$2^{3} \cdot 3 \cdot 5^{7}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
✓ |
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{2} \cdot 7$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.28._.C |
$C_5^7:S_4$ |
$2^{3} \cdot 3 \cdot 5^{7}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{2} \cdot 7$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.28._.D |
$C_5^7.D_6.C_2$ |
$2^{3} \cdot 3 \cdot 5^{7}$ |
|
|
|
✓ |
|
|
|
|
|
✓ |
|
|
✓ |
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{2} \cdot 7$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.32.a1.a1 |
$C_5\wr (C_7:C_3)$ |
$3 \cdot 5^{7} \cdot 7$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
✓ |
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{5}$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.40.a1.a1 |
$C_5^6:(C_2\times F_7)$ |
$2^{2} \cdot 3 \cdot 5^{6} \cdot 7$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
✓ |
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{3} \cdot 5$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.42._.A |
$C_5^7:D_8$ |
$2^{4} \cdot 5^{7}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2 \cdot 3 \cdot 7$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.42._.B |
$C_5^7:(C_2\times D_4)$ |
$2^{4} \cdot 5^{7}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2 \cdot 3 \cdot 7$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.42._.C |
$C_5^7:D_8$ |
$2^{4} \cdot 5^{7}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2 \cdot 3 \cdot 7$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.42._.D |
$C_5^7:(C_2\times D_4)$ |
$2^{4} \cdot 5^{7}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2 \cdot 3 \cdot 7$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.42._.E |
$C_5^7:D_8$ |
$2^{4} \cdot 5^{7}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2 \cdot 3 \cdot 7$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.42._.F |
$C_5^7:(C_2\times C_8)$ |
$2^{4} \cdot 5^{7}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
✓ |
|
✓ |
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2 \cdot 3 \cdot 7$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.42._.G |
$C_5^7:D_8$ |
$2^{4} \cdot 5^{7}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2 \cdot 3 \cdot 7$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.48._.A |
$C_5^7:C_{14}$ |
$2 \cdot 5^{7} \cdot 7$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
✓ |
|
✓ |
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{4} \cdot 3$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.48._.B |
$C_5^7:D_7$ |
$2 \cdot 5^{7} \cdot 7$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
✓ |
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{4} \cdot 3$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.48._.C |
$C_5\wr D_7$ |
$2 \cdot 5^{7} \cdot 7$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
✓ |
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{4} \cdot 3$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.56._.A |
$C_5^6.(C_5\times A_4)$ |
$2^{2} \cdot 3 \cdot 5^{7}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
✓ |
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{3} \cdot 7$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.56._.B |
$C_5^6.C_{15}.C_2^2$ |
$2^{2} \cdot 3 \cdot 5^{7}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
✓ |
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{3} \cdot 7$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.56._.C |
$C_5^7.C_6.C_2$ |
$2^{2} \cdot 3 \cdot 5^{7}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
✓ |
|
✓ |
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{3} \cdot 7$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.56._.D |
$C_5^7.D_6$ |
$2^{2} \cdot 3 \cdot 5^{7}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
✓ |
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{3} \cdot 7$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.56._.E |
$C_5^7.D_6$ |
$2^{2} \cdot 3 \cdot 5^{7}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
✓ |
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{3} \cdot 7$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.56._.F |
$C_5^6.C_{15}.C_2^2$ |
$2^{2} \cdot 3 \cdot 5^{7}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
✓ |
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{3} \cdot 7$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.56._.G |
$C_5^7.D_6$ |
$2^{2} \cdot 3 \cdot 5^{7}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
✓ |
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{3} \cdot 7$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.56._.H |
$C_5^6.C_{15}.C_2^2$ |
$2^{2} \cdot 3 \cdot 5^{7}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
✓ |
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{3} \cdot 7$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.70.a1.a1 |
$C_5^6:(C_2\times S_4)$ |
$2^{4} \cdot 3 \cdot 5^{6}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2 \cdot 5 \cdot 7$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.80._.A |
$C_5^6:F_7$ |
$2 \cdot 3 \cdot 5^{6} \cdot 7$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
✓ |
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{4} \cdot 5$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.80._.B |
$C_5^6:F_7$ |
$2 \cdot 3 \cdot 5^{6} \cdot 7$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
✓ |
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{4} \cdot 5$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.80._.C |
$C_5^6:C_7:C_6$ |
$2 \cdot 3 \cdot 5^{6} \cdot 7$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
✓ |
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{4} \cdot 5$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.84._.A |
$C_5^7.C_2^3$ |
$2^{3} \cdot 5^{7}$ |
|
|
|
|
|
|
|
|
✓ |
✓ |
|
|
✓ |
|
✓ |
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{2} \cdot 3 \cdot 7$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.84._.B |
$C_5^6.D_{10}.C_2$ |
$2^{3} \cdot 5^{7}$ |
|
|
|
|
|
|
|
|
✓ |
✓ |
|
|
✓ |
|
✓ |
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{2} \cdot 3 \cdot 7$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.84._.C |
$C_5^7:D_4$ |
$2^{3} \cdot 5^{7}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{2} \cdot 3 \cdot 7$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.84._.D |
$C_5^7:C_8$ |
$2^{3} \cdot 5^{7}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
✓ |
|
✓ |
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{2} \cdot 3 \cdot 7$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.84._.E |
$C_5^7:D_4$ |
$2^{3} \cdot 5^{7}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{2} \cdot 3 \cdot 7$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.84._.F |
$C_5^7:C_8$ |
$2^{3} \cdot 5^{7}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
✓ |
|
✓ |
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{2} \cdot 3 \cdot 7$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.84._.G |
$C_5^7:D_4$ |
$2^{3} \cdot 5^{7}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{2} \cdot 3 \cdot 7$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.84._.H |
$C_5^7:D_4$ |
$2^{3} \cdot 5^{7}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{2} \cdot 3 \cdot 7$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.84._.I |
$C_5^7:D_4$ |
$2^{3} \cdot 5^{7}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{2} \cdot 3 \cdot 7$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
52500000.d.84._.J |
$C_5^7:D_4$ |
$2^{3} \cdot 5^{7}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_5^7:(C_2\times \PGL(2,7))$ |
$2^{5} \cdot 3 \cdot 5^{7} \cdot 7$ |
|
|
$2^{2} \cdot 3 \cdot 7$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |