Properties

Label 52500000.d.40.a1.a1
Order $ 2^{2} \cdot 3 \cdot 5^{6} \cdot 7 $
Index $ 2^{3} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^6:(C_2\times F_7)$
Order: \(1312500\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{6} \cdot 7 \)
Index: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Exponent: \(210\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \)
Generators: $\langle(2,5)(3,4)(6,8)(9,10)(11,13)(14,15)(16,18)(19,20)(21,23)(24,25)(26,29)(27,28) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, solvable, and an A-group. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_5^7:(C_2\times \PGL(2,7))$
Order: \(52500000\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{7} \cdot 7 \)
Exponent: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Quotient set structure

Since this subgroup has trivial core, the ambient group $G$ acts faithfully and transitively on the set of cosets of $H$. The resulting permutation representation is isomorphic to 40T188410.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^7:(C_4\times \PGL(2,7))$, of order \(105000000\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{7} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_5^6.C_8:F_7$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$40$
Möbius function not computed
Projective image not computed