Properties

Label 625000.bp
Order \( 2^{3} \cdot 5^{7} \)
Exponent \( 2^{2} \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{14} \cdot 3 \cdot 5^{8} \)
$\card{\mathrm{Out}(G)}$ \( 2^{11} \cdot 3 \cdot 5 \)
Perm deg. $35$
Trans deg. $40$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 35 | (1,2,4,7)(3,5,9,12)(6,10,15,20)(8,13,19,16)(11,17)(14,18)(21,22,24,23,25,27,29,30,26,28)(32,33)(34,35), (1,3,6,11,15,9,4,8,14,19)(2,5,10,16,20,13,7,12,18,17)(21,23,26,27,29,30,25,28,24,22)(31,32)(33,34) >;
 
Copy content gap:G := Group( (1,2,4,7)(3,5,9,12)(6,10,15,20)(8,13,19,16)(11,17)(14,18)(21,22,24,23,25,27,29,30,26,28)(32,33)(34,35), (1,3,6,11,15,9,4,8,14,19)(2,5,10,16,20,13,7,12,18,17)(21,23,26,27,29,30,25,28,24,22)(31,32)(33,34) );
 
Copy content sage:G = PermutationGroup(['(1,2,4,7)(3,5,9,12)(6,10,15,20)(8,13,19,16)(11,17)(14,18)(21,22,24,23,25,27,29,30,26,28)(32,33)(34,35)', '(1,3,6,11,15,9,4,8,14,19)(2,5,10,16,20,13,7,12,18,17)(21,23,26,27,29,30,25,28,24,22)(31,32)(33,34)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(613300396904285001500064000108021904638241853040230525830140055438205805278375052017591267122817687695858477212902183318548229298110164847280799743,625000)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.7; f = G.8; g = G.9; h = G.10;
 

Group information

Description:$C_5^7:D_4$
Order: \(625000\)\(\medspace = 2^{3} \cdot 5^{7} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(19200000000\)\(\medspace = 2^{14} \cdot 3 \cdot 5^{8} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 3, $C_5$ x 7
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 4 5 10 20
Elements 1 3125 31250 78124 387500 125000 625000
Conjugacy classes   1 3 1 9844 162 4 10015
Divisions 1 3 1 2563 51 1 2620

Minimal presentations

Permutation degree:$35$
Transitive degree:$40$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h \mid b^{20}=c^{5}=d^{5}=e^{5}=f^{5}=g^{5}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([10, -2, -2, -2, -5, -5, 5, 5, 5, 5, 5, 4420400, 8255961, 51, 15122282, 82, 1283, 5298004, 29014, 4524, 24015, 16371606, 46216, 70026, 8032007, 11740817, 11474427, 1836008, 18714618, 11900728, 29724009, 5466019, 12505029]); a,b,c,d,e,f,g,h := Explode([G.1, G.2, G.5, G.6, G.7, G.8, G.9, G.10]); AssignNames(~G, ["a", "b", "b2", "b4", "c", "d", "e", "f", "g", "h"]);
 
Copy content gap:G := PcGroupCode(613300396904285001500064000108021904638241853040230525830140055438205805278375052017591267122817687695858477212902183318548229298110164847280799743,625000); a := G.1; b := G.2; c := G.5; d := G.6; e := G.7; f := G.8; g := G.9; h := G.10;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(613300396904285001500064000108021904638241853040230525830140055438205805278375052017591267122817687695858477212902183318548229298110164847280799743,625000)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.7; f = G.8; g = G.9; h = G.10;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(613300396904285001500064000108021904638241853040230525830140055438205805278375052017591267122817687695858477212902183318548229298110164847280799743,625000)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.7; f = G.8; g = G.9; h = G.10;
 
Permutation group:Degree $35$ $\langle(1,2,4,7)(3,5,9,12)(6,10,15,20)(8,13,19,16)(11,17)(14,18)(21,22,24,23,25,27,29,30,26,28) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 35 | (1,2,4,7)(3,5,9,12)(6,10,15,20)(8,13,19,16)(11,17)(14,18)(21,22,24,23,25,27,29,30,26,28)(32,33)(34,35), (1,3,6,11,15,9,4,8,14,19)(2,5,10,16,20,13,7,12,18,17)(21,23,26,27,29,30,25,28,24,22)(31,32)(33,34) >;
 
Copy content gap:G := Group( (1,2,4,7)(3,5,9,12)(6,10,15,20)(8,13,19,16)(11,17)(14,18)(21,22,24,23,25,27,29,30,26,28)(32,33)(34,35), (1,3,6,11,15,9,4,8,14,19)(2,5,10,16,20,13,7,12,18,17)(21,23,26,27,29,30,25,28,24,22)(31,32)(33,34) );
 
Copy content sage:G = PermutationGroup(['(1,2,4,7)(3,5,9,12)(6,10,15,20)(8,13,19,16)(11,17)(14,18)(21,22,24,23,25,27,29,30,26,28)(32,33)(34,35)', '(1,3,6,11,15,9,4,8,14,19)(2,5,10,16,20,13,7,12,18,17)(21,23,26,27,29,30,25,28,24,22)(31,32)(33,34)'])
 
Transitive group: 40T139820 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_5^6$ . $D_{20}$ $C_5^6$ . $(C_5:D_4)$ (2) $C_5$ . $(C_5^6:D_4)$ (2) $C_5$ . $(C_5^6:D_4)$ all 22

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{2}^{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{10}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 79 normal subgroups (15 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $D_4$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^7$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 11 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $10015 \times 10015$ character table is not available for this group.

Rational character table

The $2620 \times 2620$ rational character table is not available for this group.