Properties

Label 52500000.d.2._.C
Order $ 2^{4} \cdot 3 \cdot 5^{7} \cdot 7 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^7:\PGL(2,7)$
Order: \(26250000\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{7} \cdot 7 \)
Index: \(2\)
Exponent: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Generators: $\langle(21,24,22,25,23)(36,38,40,37,39), (1,11,2,12,3,13,4,14,5,15)(6,23,7,24,8,25,9,21,10,22) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is characteristic (hence normal), maximal, nonabelian, and nonsolvable. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_5^7:(C_2\times \PGL(2,7))$
Order: \(52500000\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{7} \cdot 7 \)
Exponent: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^7:(C_4\times \PGL(2,7))$, of order \(105000000\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{7} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_5^7:(C_4\times \PGL(2,7))$, of order \(105000000\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{7} \cdot 7 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed