Properties

Label 52500000.d.84._.A
Order $ 2^{3} \cdot 5^{7} $
Index $ 2^{2} \cdot 3 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(625000\)\(\medspace = 2^{3} \cdot 5^{7} \)
Index: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Exponent: not computed
Generators: $\langle(1,34,2,35,3,31,4,32,5,33)(6,36,10,40,9,39,8,38,7,37)(11,17,15,16,14,20,13,19,12,18) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_5^7:(C_2\times \PGL(2,7))$
Order: \(52500000\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{7} \cdot 7 \)
Exponent: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^7:(C_4\times \PGL(2,7))$, of order \(105000000\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{7} \cdot 7 \)
$\operatorname{Aut}(H)$ not computed
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$14$
Möbius function not computed
Projective image not computed