Properties

Label 1093750.c
Order \( 2 \cdot 5^{7} \cdot 7 \)
Exponent \( 2 \cdot 5 \cdot 7 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2 \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{5} \cdot 3 \cdot 5^{7} \cdot 7 \cdot 31 \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \cdot 3 \cdot 31 \)
Perm deg. $35$
Trans deg. $35$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 35 | (1,3)(4,5)(6,34,9,31,7,33,10,35,8,32)(11,27,14,29,12,26,15,28,13,30)(16,24,20,23,19,22,18,21,17,25), (1,13,2,12,3,11,4,15,5,14)(6,9)(7,8)(16,31,17,35,18,34,19,33,20,32)(21,30,25,26,24,27,23,28,22,29) >;
 
Copy content gap:G := Group( (1,3)(4,5)(6,34,9,31,7,33,10,35,8,32)(11,27,14,29,12,26,15,28,13,30)(16,24,20,23,19,22,18,21,17,25), (1,13,2,12,3,11,4,15,5,14)(6,9)(7,8)(16,31,17,35,18,34,19,33,20,32)(21,30,25,26,24,27,23,28,22,29) );
 
Copy content sage:G = PermutationGroup(['(1,3)(4,5)(6,34,9,31,7,33,10,35,8,32)(11,27,14,29,12,26,15,28,13,30)(16,24,20,23,19,22,18,21,17,25)', '(1,13,2,12,3,11,4,15,5,14)(6,9)(7,8)(16,31,17,35,18,34,19,33,20,32)(21,30,25,26,24,27,23,28,22,29)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(5104130622105274671984745622229268700857914689072355714897428068903928107472460750602282297877330295891479234732175018623384879625265918536851225,1093750)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.6; f = G.7; g = G.8; h = G.9;
 

Group information

Description:$C_5^7:D_7$
Order: \(1093750\)\(\medspace = 2 \cdot 5^{7} \cdot 7 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_5^6.C_{217}.C_{30}.C_2^3.C_2$, of order \(1627500000\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{7} \cdot 7 \cdot 31 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$, $C_5$ x 7, $C_7$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian, solvable, and an A-group. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 5 7 10 35
Elements 1 4375 78124 93750 542500 375000 1093750
Conjugacy classes   1 1 5644 3 124 12 5785
Divisions 1 1 1489 1 31 1 1524
Autjugacy classes 1 1 13 1 1 1 18

Minimal presentations

Permutation degree:$35$
Transitive degree:$35$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h \mid b^{35}=c^{5}=d^{5}=e^{5}=f^{5}=g^{5}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([9, -2, -5, -7, -5, 5, 5, 5, 5, 5, 8081640, 12447505, 100, 16622282, 21709803, 11055252, 2403849, 20303338, 177682, 58359425, 26255894, 2062391, 28065246, 32087175, 4727544, 77253127, 38986936, 2668705, 57958748, 24491582, 5080913]); a,b,c,d,e,f,g,h := Explode([G.1, G.2, G.4, G.5, G.6, G.7, G.8, G.9]); AssignNames(~G, ["a", "b", "b5", "c", "d", "e", "f", "g", "h"]);
 
Copy content gap:G := PcGroupCode(5104130622105274671984745622229268700857914689072355714897428068903928107472460750602282297877330295891479234732175018623384879625265918536851225,1093750); a := G.1; b := G.2; c := G.4; d := G.5; e := G.6; f := G.7; g := G.8; h := G.9;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(5104130622105274671984745622229268700857914689072355714897428068903928107472460750602282297877330295891479234732175018623384879625265918536851225,1093750)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.6; f = G.7; g = G.8; h = G.9;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(5104130622105274671984745622229268700857914689072355714897428068903928107472460750602282297877330295891479234732175018623384879625265918536851225,1093750)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.6; f = G.7; g = G.8; h = G.9;
 
Permutation group:Degree $35$ $\langle(1,3)(4,5)(6,34,9,31,7,33,10,35,8,32)(11,27,14,29,12,26,15,28,13,30)(16,24,20,23,19,22,18,21,17,25) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 35 | (1,3)(4,5)(6,34,9,31,7,33,10,35,8,32)(11,27,14,29,12,26,15,28,13,30)(16,24,20,23,19,22,18,21,17,25), (1,13,2,12,3,11,4,15,5,14)(6,9)(7,8)(16,31,17,35,18,34,19,33,20,32)(21,30,25,26,24,27,23,28,22,29) >;
 
Copy content gap:G := Group( (1,3)(4,5)(6,34,9,31,7,33,10,35,8,32)(11,27,14,29,12,26,15,28,13,30)(16,24,20,23,19,22,18,21,17,25), (1,13,2,12,3,11,4,15,5,14)(6,9)(7,8)(16,31,17,35,18,34,19,33,20,32)(21,30,25,26,24,27,23,28,22,29) );
 
Copy content sage:G = PermutationGroup(['(1,3)(4,5)(6,34,9,31,7,33,10,35,8,32)(11,27,14,29,12,26,15,28,13,30)(16,24,20,23,19,22,18,21,17,25)', '(1,13,2,12,3,11,4,15,5,14)(6,9)(7,8)(16,31,17,35,18,34,19,33,20,32)(21,30,25,26,24,27,23,28,22,29)'])
 
Transitive group: 35T106 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_5^6$ . $D_{35}$ $(C_5^6:C_7)$ . $D_5$ $C_5$ . $(C_5^6:D_7)$ more information

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_1$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 7 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $C_5^7:D_7$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_5^7:C_7$ $G/G' \simeq$ $C_2$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_5^7:D_7$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_5^7$ $G/\operatorname{Fit} \simeq$ $D_7$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_5^7:D_7$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_5^7$ $G/\operatorname{soc} \simeq$ $D_7$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^7$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7$

Subgroup diagram and profile

Series

Derived series $C_5^7:D_7$ $\rhd$ $C_5^7:C_7$ $\rhd$ $C_5^6$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_5^7:D_7$ $\rhd$ $C_5^7:C_7$ $\rhd$ $C_5^6:C_7$ $\rhd$ $C_5^6$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_5^7:D_7$ $\rhd$ $C_5^7:C_7$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $5785 \times 5785$ character table is not available for this group.

Rational character table

The $1524 \times 1524$ rational character table is not available for this group.