# Group 1093750.c downloaded from the LMFDB on 15 September 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # Constructions GPC := PcGroupCode(5104130622105274671984745622229268700857914689072355714897428068903928107472460750602282297877330295891479234732175018623384879625265918536851225,1093750); a := GPC.1; b := GPC.2; c := GPC.4; d := GPC.5; e := GPC.6; f := GPC.7; g := GPC.8; h := GPC.9; GPerm := Group( (1,3)(4,5)(6,34,9,31,7,33,10,35,8,32)(11,27,14,29,12,26,15,28,13,30)(16,24,20,23,19,22,18,21,17,25), (1,13,2,12,3,11,4,15,5,14)(6,9)(7,8)(16,31,17,35,18,34,19,33,20,32)(21,30,25,26,24,27,23,28,22,29) ); # Booleans booleans_1093750_c := rec( Agroup := true, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := false);