Subgroup ($H$) information
Description: | $C_5^6:(C_2\times S_4)$ |
Order: | \(750000\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{6} \) |
Index: | \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \) |
Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Generators: |
$\langle(6,9,7,10,8)(16,18,20,17,19)(21,24,22,25,23)(26,28,30,27,29), (21,22,23,24,25) \!\cdots\! \rangle$
|
Derived length: | $4$ |
The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.
Ambient group ($G$) information
Description: | $C_5^7:(C_2\times \PGL(2,7))$ |
Order: | \(52500000\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{7} \cdot 7 \) |
Exponent: | \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \) |
Derived length: | $1$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_5^7:(C_4\times \PGL(2,7))$, of order \(105000000\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{7} \cdot 7 \) |
$\operatorname{Aut}(H)$ | $C_5^6:(C_4\wr C_2\times S_4)$, of order \(12000000\)\(\medspace = 2^{8} \cdot 3 \cdot 5^{6} \) |
$\card{W}$ | not computed |
Related subgroups
Centralizer: | not computed |
Normalizer: | not computed |
Normal closure: | not computed |
Core: | not computed |
Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
Number of subgroups in this conjugacy class | $70$ |
Möbius function | not computed |
Projective image | not computed |