Learn more

Refine search


Results (1-50 of 302 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
11.a1 11.a \( 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -7820, -263580]$ \(y^2+y=x^3-x^2-7820x-263580\)
11.a2 11.a \( 11 \) $0$ $\Z/5\Z$ $1$ $[0, -1, 1, -10, -20]$ \(y^2+y=x^3-x^2-10x-20\)
11.a3 11.a \( 11 \) $0$ $\Z/5\Z$ $1$ $[0, -1, 1, 0, 0]$ \(y^2+y=x^3-x^2\)
14.a1 14.a \( 2 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -2731, -55146]$ \(y^2+xy+y=x^3-2731x-55146\)
14.a2 14.a \( 2 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -171, -874]$ \(y^2+xy+y=x^3-171x-874\)
14.a3 14.a \( 2 \cdot 7 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -36, -70]$ \(y^2+xy+y=x^3-36x-70\)
14.a4 14.a \( 2 \cdot 7 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -11, 12]$ \(y^2+xy+y=x^3-11x+12\)
14.a5 14.a \( 2 \cdot 7 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -1, 0]$ \(y^2+xy+y=x^3-x\)
14.a6 14.a \( 2 \cdot 7 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, 4, -6]$ \(y^2+xy+y=x^3+4x-6\)
15.a1 15.a \( 3 \cdot 5 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -2160, -39540]$ \(y^2+xy+y=x^3+x^2-2160x-39540\)
15.a2 15.a \( 3 \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -135, -660]$ \(y^2+xy+y=x^3+x^2-135x-660\)
15.a3 15.a \( 3 \cdot 5 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -110, -880]$ \(y^2+xy+y=x^3+x^2-110x-880\)
15.a4 15.a \( 3 \cdot 5 \) $0$ $\Z/4\Z$ $1$ $[1, 1, 1, -80, 242]$ \(y^2+xy+y=x^3+x^2-80x+242\)
15.a5 15.a \( 3 \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[1, 1, 1, -10, -10]$ \(y^2+xy+y=x^3+x^2-10x-10\)
15.a6 15.a \( 3 \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[1, 1, 1, -5, 2]$ \(y^2+xy+y=x^3+x^2-5x+2\)
15.a7 15.a \( 3 \cdot 5 \) $0$ $\Z/4\Z$ $1$ $[1, 1, 1, 0, 0]$ \(y^2+xy+y=x^3+x^2\)
15.a8 15.a \( 3 \cdot 5 \) $0$ $\Z/8\Z$ $1$ $[1, 1, 1, 35, -28]$ \(y^2+xy+y=x^3+x^2+35x-28\)
17.a1 17.a \( 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -91, -310]$ \(y^2+xy+y=x^3-x^2-91x-310\)
17.a2 17.a \( 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 1, -6, -4]$ \(y^2+xy+y=x^3-x^2-6x-4\)
17.a3 17.a \( 17 \) $0$ $\Z/4\Z$ $1$ $[1, -1, 1, -1, -14]$ \(y^2+xy+y=x^3-x^2-x-14\)
17.a4 17.a \( 17 \) $0$ $\Z/4\Z$ $1$ $[1, -1, 1, -1, 0]$ \(y^2+xy+y=x^3-x^2-x\)
19.a1 19.a \( 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -769, -8470]$ \(y^2+y=x^3+x^2-769x-8470\)
19.a2 19.a \( 19 \) $0$ $\Z/3\Z$ $1$ $[0, 1, 1, -9, -15]$ \(y^2+y=x^3+x^2-9x-15\)
19.a3 19.a \( 19 \) $0$ $\Z/3\Z$ $1$ $[0, 1, 1, 1, 0]$ \(y^2+y=x^3+x^2+x\)
20.a1 20.a \( 2^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -41, -116]$ \(y^2=x^3+x^2-41x-116\)
20.a2 20.a \( 2^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -36, -140]$ \(y^2=x^3+x^2-36x-140\)
20.a3 20.a \( 2^{2} \cdot 5 \) $0$ $\Z/6\Z$ $1$ $[0, 1, 0, -1, 0]$ \(y^2=x^3+x^2-x\)
20.a4 20.a \( 2^{2} \cdot 5 \) $0$ $\Z/6\Z$ $1$ $[0, 1, 0, 4, 4]$ \(y^2=x^3+x^2+4x+4\)
21.a1 21.a \( 3 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -784, -8515]$ \(y^2+xy=x^3-784x-8515\)
21.a2 21.a \( 3 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 0, -49, -136]$ \(y^2+xy=x^3-49x-136\)
21.a3 21.a \( 3 \cdot 7 \) $0$ $\Z/8\Z$ $1$ $[1, 0, 0, -39, 90]$ \(y^2+xy=x^3-39x+90\)
21.a4 21.a \( 3 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -34, -217]$ \(y^2+xy=x^3-34x-217\)
21.a5 21.a \( 3 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[1, 0, 0, -4, -1]$ \(y^2+xy=x^3-4x-1\)
21.a6 21.a \( 3 \cdot 7 \) $0$ $\Z/4\Z$ $1$ $[1, 0, 0, 1, 0]$ \(y^2+xy=x^3+x\)
24.a1 24.a \( 2^{3} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -384, -2772]$ \(y^2=x^3-x^2-384x-2772\)
24.a2 24.a \( 2^{3} \cdot 3 \) $0$ $\Z/4\Z$ $1$ $[0, -1, 0, -64, 220]$ \(y^2=x^3-x^2-64x+220\)
24.a3 24.a \( 2^{3} \cdot 3 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -24, -36]$ \(y^2=x^3-x^2-24x-36\)
24.a4 24.a \( 2^{3} \cdot 3 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[0, -1, 0, -4, 4]$ \(y^2=x^3-x^2-4x+4\)
24.a5 24.a \( 2^{3} \cdot 3 \) $0$ $\Z/4\Z$ $1$ $[0, -1, 0, 1, 0]$ \(y^2=x^3-x^2+x\)
24.a6 24.a \( 2^{3} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 16, -180]$ \(y^2=x^3-x^2+16x-180\)
26.a1 26.a \( 2 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -460, -3830]$ \(y^2+xy+y=x^3-460x-3830\)
26.a2 26.a \( 2 \cdot 13 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -5, -8]$ \(y^2+xy+y=x^3-5x-8\)
26.a3 26.a \( 2 \cdot 13 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, 0, 0]$ \(y^2+xy+y=x^3\)
26.b1 26.b \( 2 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -213, -1257]$ \(y^2+xy+y=x^3-x^2-213x-1257\)
26.b2 26.b \( 2 \cdot 13 \) $0$ $\Z/7\Z$ $1$ $[1, -1, 1, -3, 3]$ \(y^2+xy+y=x^3-x^2-3x+3\)
27.a1 27.a \( 3^{3} \) $0$ $\mathsf{trivial}$ $-27$ $1$ $[0, 0, 1, -270, -1708]$ \(y^2+y=x^3-270x-1708\)
27.a2 27.a \( 3^{3} \) $0$ $\Z/3\Z$ $-27$ $1$ $[0, 0, 1, -30, 63]$ \(y^2+y=x^3-30x+63\)
27.a3 27.a \( 3^{3} \) $0$ $\Z/3\Z$ $-3$ $1$ $[0, 0, 1, 0, -7]$ \(y^2+y=x^3-7\)
27.a4 27.a \( 3^{3} \) $0$ $\Z/3\Z$ $-3$ $1$ $[0, 0, 1, 0, 0]$ \(y^2+y=x^3\)
30.a1 30.a \( 2 \cdot 3 \cdot 5 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -5334, -150368]$ \(y^2+xy+y=x^3-5334x-150368\)
Next   Download to