Show commands: Magma / Oscar / PariGP / SageMath

This is a model for the modular curve $X_1(14)$.

## Simplified equation

 $$y^2+xy+y=x^3-x$$ y^2+xy+y=x^3-x (homogenize, simplify) $$y^2z+xyz+yz^2=x^3-xz^2$$ y^2z+xyz+yz^2=x^3-xz^2 (dehomogenize, simplify) $$y^2=x^3-675x+13662$$ y^2=x^3-675x+13662 (homogenize, minimize)

comment: Define the curve

sage: E = EllipticCurve([1, 0, 1, -1, 0])

gp: E = ellinit([1, 0, 1, -1, 0])

magma: E := EllipticCurve([1, 0, 1, -1, 0]);

oscar: E = EllipticCurve([1, 0, 1, -1, 0])

sage: E.short_weierstrass_model()

magma: WeierstrassModel(E);

oscar: short_weierstrass_model(E)

## Mordell-Weil group structure

$$\Z/{6}\Z$$

magma: MordellWeilGroup(E);

## Torsion generators

$$\left(1, 0\right)$$

comment: Torsion subgroup

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

oscar: torsion_structure(E)

## Integral points

$$\left(-1, 0\right)$$, $$\left(0, 0\right)$$, $$\left(0, -1\right)$$, $$\left(1, 0\right)$$, $$\left(1, -2\right)$$

comment: Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

## Invariants

 Conductor: $$14$$ = $2 \cdot 7$ comment: Conductor  sage: E.conductor().factor()  gp: ellglobalred(E)  magma: Conductor(E);  oscar: conductor(E) Discriminant: $-28$ = $-1 \cdot 2^{2} \cdot 7$ comment: Discriminant  sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E);  oscar: discriminant(E) j-invariant: $$-\frac{15625}{28}$$ = $-1 \cdot 2^{-2} \cdot 5^{6} \cdot 7^{-1}$ comment: j-invariant  sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E);  oscar: j_invariant(E) Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) sage: E.has_cm()  magma: HasComplexMultiplication(E); Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $-1.0320848985249978885230789428\dots$ gp: ellheight(E)  magma: FaltingsHeight(E);  oscar: faltings_height(E) Stable Faltings height: $-1.0320848985249978885230789428\dots$ magma: StableFaltingsHeight(E);  oscar: stable_faltings_height(E)

## BSD invariants

 Analytic rank: $0$ sage: E.analytic_rank()  gp: ellanalyticrank(E)  magma: AnalyticRank(E); Regulator: $1$ comment: Regulator  sage: E.regulator()  G = E.gen \\ if available matdet(ellheightmatrix(E,G))  magma: Regulator(E); Real period: $5.9440258682006497025087150302\dots$ comment: Real Period  sage: E.period_lattice().omega()  gp: if(E.disc>0,2,1)*E.omega  magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E); Tamagawa product: $2$  = $2\cdot1$ comment: Tamagawa numbers  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[i,1],gr[i]] | i<-[1..#gr[,1]]]  magma: TamagawaNumbers(E);  oscar: tamagawa_numbers(E) Torsion order: $6$ comment: Torsion order  sage: E.torsion_order()  gp: elltors(E)  magma: Order(TorsionSubgroup(E));  oscar: prod(torsion_structure(E)) Analytic order of Ш: $1$ (exact) comment: Order of Sha  sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Special value: $L(E,1)$ ≈ $0.33022365934448053902826194612$ comment: Special L-value  r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: [r,L1r] = ellanalyticrank(E); L1r/r!  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

## BSD formula

$\displaystyle 0.330223659 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 5.944026 \cdot 1.000000 \cdot 2}{6^2} \approx 0.330223659$

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)

E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;

Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();

omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();

assert r == ar; print("anayltic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))

/* self-contained Magma code snippet for the BSD formula (checks rank, computes analyiic sha) */

E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;

sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);

reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);

assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);

## Modular invariants

$$q - q^{2} - 2 q^{3} + q^{4} + 2 q^{6} + q^{7} - q^{8} + q^{9} - 2 q^{12} - 4 q^{13} - q^{14} + q^{16} + 6 q^{17} - q^{18} + 2 q^{19} + O(q^{20})$$

comment: q-expansion of modular form

sage: E.q_eigenform(20)

\\ actual modular form, use for small N

[mf,F] = mffromell(E)

Ser(mfcoefs(mf,20),q)

\\ or just the series

Ser(ellan(E,20),q)*q

magma: ModularForm(E);

Modular degree: 3
comment: Modular degree

sage: E.modular_degree()

gp: ellmoddegree(E)

magma: ModularDegree(E);

$\Gamma_0(N)$-optimal: no
Manin constant: 3
comment: Manin constant

magma: ManinConstant(E);

## Local data

This elliptic curve is semistable. There are 2 primes of bad reduction:

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $2$ $I_{2}$ Non-split multiplicative 1 1 2 2
$7$ $1$ $I_{1}$ Split multiplicative -1 1 1 1

comment: Local data

sage: E.local_data()

gp: ellglobalred(E)

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]

## Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 8.6.0.1
$3$ 3B.1.1 9.24.0.1

comment: mod p Galois image

sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

gens = [[1, 36, 0, 1], [253, 36, 10, 361], [1, 0, 36, 1], [281, 36, 0, 1], [127, 36, 262, 361], [469, 36, 468, 37], [19, 36, 216, 91], [160, 9, 47, 22], [1, 18, 14, 253]]

GL(2,Integers(504)).subgroup(gens)

Gens := [[1, 36, 0, 1], [253, 36, 10, 361], [1, 0, 36, 1], [281, 36, 0, 1], [127, 36, 262, 361], [469, 36, 468, 37], [19, 36, 216, 91], [160, 9, 47, 22], [1, 18, 14, 253]];

sub<GL(2,Integers(504))|Gens>;

The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level $$504 = 2^{3} \cdot 3^{2} \cdot 7$$, index $864$, genus $21$, and generators

$\left(\begin{array}{rr} 1 & 36 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 253 & 36 \\ 10 & 361 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 36 & 1 \end{array}\right),\left(\begin{array}{rr} 281 & 36 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 127 & 36 \\ 262 & 361 \end{array}\right),\left(\begin{array}{rr} 469 & 36 \\ 468 & 37 \end{array}\right),\left(\begin{array}{rr} 19 & 36 \\ 216 & 91 \end{array}\right),\left(\begin{array}{rr} 160 & 9 \\ 47 & 22 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 14 & 253 \end{array}\right)$.

The torsion field $K:=\Q(E)$ is a degree-$13934592$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/504\Z)$.

## Isogenies

gp: ellisomat(E)

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2, 3, 6, 9 and 18.
Its isogeny class 14a consists of 6 curves linked by isogenies of degrees dividing 18.

## Twists

This elliptic curve is its own minimal quadratic twist.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{6}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{-7})$$ $$\Z/2\Z \oplus \Z/6\Z$$ 2.0.7.1-28.2-a6 $3$ $$\Q(\zeta_{7})^+$$ $$\Z/18\Z$$ 3.3.49.1-56.1-a5 $4$ 4.2.448.1 $$\Z/12\Z$$ Not in database $6$ 6.0.1037232.1 $$\Z/3\Z \oplus \Z/6\Z$$ Not in database $6$ 6.0.21168.1 $$\Z/18\Z$$ Not in database $6$ $$\Q(\zeta_{7})$$ $$\Z/2\Z \oplus \Z/18\Z$$ Not in database $8$ 8.0.9834496.2 $$\Z/2\Z \oplus \Z/12\Z$$ Not in database $8$ 8.0.120472576.1 $$\Z/2\Z \oplus \Z/12\Z$$ Not in database $12$ 12.0.52716660869376.1 $$\Z/6\Z \oplus \Z/6\Z$$ Not in database $12$ 12.0.1075850221824.1 $$\Z/2\Z \oplus \Z/18\Z$$ Not in database $12$ 12.6.10578455953408.1 $$\Z/36\Z$$ Not in database $16$ deg 16 $$\Z/24\Z$$ Not in database $18$ 18.0.1115906277282951168.1 $$\Z/3\Z \oplus \Z/18\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

## Iwasawa invariants

$p$ Reduction type $\lambda$-invariant(s) 2 3 7 nonsplit ord split 0 0 1 0 0 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.

## $p$-adic regulators

All $p$-adic regulators are identically $1$ since the rank is $0$.

This curve $E$ also parametrizes pairs $(R,T)$ where $R$ is a rational rectangle, $T$ is a Pythagorean triangle, and $R,T$ have the same perimeter and the same area. (That is, $E$ is birational with the curve of $(a:b:c:x:y) \in {\bf P}^4$ with $a^2+b^2=c^2$, $a+b+c=2x+2y$, and $ab/2=xy$.) Unfortunately the six rational points on $E$ all yield degenerate solutions. [Noted in passing in Richard Guy's paper "My Favorite Elliptic Curve: A Tale of Two Types of Triangles", Amer. Math. Monthly 102 #9 (Nov. 1995), 771-781.]