Show commands: Magma / Pari/GP / SageMath

This is a model for the modular curve $X_1(14)$.

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, 0, 1, -1, 0])

gp: E = ellinit([1, 0, 1, -1, 0])

magma: E := EllipticCurve([1, 0, 1, -1, 0]);

$$y^2+xy+y=x^3-x$$

## Mordell-Weil group structure

$\Z/{6}\Z$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(1, 0\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-1, 0\right)$$, $$\left(0, 0\right)$$, $$\left(0, -1\right)$$, $$\left(1, 0\right)$$, $$\left(1, -2\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)  magma: Conductor(E); Conductor: $$14$$ = $2 \cdot 7$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $-28$ = $-1 \cdot 2^{2} \cdot 7$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$-\frac{15625}{28}$$ = $-1 \cdot 2^{-2} \cdot 5^{6} \cdot 7^{-1}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $-1.0320848985249978885230789428\dots$ Stable Faltings height: $-1.0320848985249978885230789428\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $0$ sage: E.regulator()  magma: Regulator(E); Regulator: $1$ sage: E.period_lattice().omega()  gp: E.omega  magma: RealPeriod(E); Real period: $5.9440258682006497025087150302\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[i,1],gr[i]] | i<-[1..#gr[,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $2$  = $2\cdot1$ sage: E.torsion_order()  gp: elltors(E)  magma: Order(TorsionSubgroup(E)); Torsion order: $6$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar/factorial(ar)  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L(E,1)$ ≈ $0.33022365934448053902826194612$

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy)/(2*xy+E.a1*xy+E.a3)

magma: ModularForm(E);

$$q - q^{2} - 2 q^{3} + q^{4} + 2 q^{6} + q^{7} - q^{8} + q^{9} - 2 q^{12} - 4 q^{13} - q^{14} + q^{16} + 6 q^{17} - q^{18} + 2 q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 3 $\Gamma_0(N)$-optimal: no Manin constant: 3

## Local data

This elliptic curve is semistable. There are 2 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $2$ $I_{2}$ Non-split multiplicative 1 1 2 2
$7$ $1$ $I_{1}$ Split multiplicative -1 1 1 1

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 8.6.0.1
$3$ 3B.1.1 9.24.0.1

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

All $p$-adic regulators are identically $1$ since the rank is $0$.

## Iwasawa invariants

$p$ Reduction type $\lambda$-invariant(s) 2 3 7 nonsplit ord split 0 0 1 0 0 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2, 3, 6, 9 and 18.
Its isogeny class 14a consists of 6 curves linked by isogenies of degrees dividing 18.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{6}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{-7})$$ $$\Z/2\Z \times \Z/6\Z$$ 2.0.7.1-28.2-a6 $3$ $$\Q(\zeta_{7})^+$$ $$\Z/18\Z$$ 3.3.49.1-56.1-a5 $4$ 4.2.448.1 $$\Z/12\Z$$ Not in database $6$ 6.0.1037232.1 $$\Z/3\Z \times \Z/6\Z$$ Not in database $6$ 6.0.21168.1 $$\Z/18\Z$$ Not in database $6$ $$\Q(\zeta_{7})$$ $$\Z/2\Z \times \Z/18\Z$$ Not in database $8$ 8.0.9834496.2 $$\Z/2\Z \times \Z/12\Z$$ Not in database $8$ 8.0.120472576.1 $$\Z/2\Z \times \Z/12\Z$$ Not in database $12$ 12.0.52716660869376.1 $$\Z/6\Z \times \Z/6\Z$$ Not in database $12$ 12.0.1075850221824.1 $$\Z/2\Z \times \Z/18\Z$$ Not in database $12$ 12.6.10578455953408.1 $$\Z/36\Z$$ Not in database $16$ Deg 16 $$\Z/24\Z$$ Not in database $18$ 18.0.1115906277282951168.1 $$\Z/3\Z \times \Z/18\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

This curve $E$ also parametrizes pairs $(R,T)$ where $R$ is a rational rectangle, $T$ is a Pythagorean triangle, and $R,T$ have the same perimeter and the same area. (That is, $E$ is birational with the curve of $(a:b:c:x:y) \in {\bf P}^4$ with $a^2+b^2=c^2$, $a+b+c=2x+2y$, and $ab/2=xy$.) Unfortunately the six rational points on $E$ all yield degenerate solutions. [Noted in passing in Richard Guy's paper "My Favorite Elliptic Curve: A Tale of Two Types of Triangles", Amer. Math. Monthly 102 #9 (Nov. 1995), 771-781.]