⌂
→
Elliptic curves
→
$\Q$
→
14
Citation
·
Feedback
·
Hide Menu
Elliptic curves over $\Q$ of conductor 14
Introduction
Overview
Random
Universe
Knowledge
L-functions
Rational
All
Modular forms
Classical
Maass
Hilbert
Bianchi
Varieties
Elliptic curves over $\Q$
Elliptic curves over $\Q(\alpha)$
Genus 2 curves over $\Q$
Higher genus families
Abelian varieties over $\F_{q}$
Fields
Number fields
$p$-adic fields
Representations
Dirichlet characters
Artin representations
Groups
Galois groups
Sato-Tate groups
Database
↑
Learn more
Source and acknowledgments
Completeness of the data
Reliability of the data
Elliptic curve labels
Congruent number curves
Refine search
Conductor
prime
p-power
sq-free
divides
j-invariant
Rank
Torsion
Complex multiplication
trivial
order 4
order 8
order 12
C2
C3
C4
C5
C6
C7
C8
C9
C10
C12
C2×C2
C2×C4
C2×C6
C2×C8
no potential CM
potential CM
CM field Q(sqrt(-1))
CM field Q(sqrt(-3))
CM field Q(sqrt(-7))
CM discriminant -3
CM discriminant -4
CM discriminant -7
CM discriminant -8
CM discriminant -11
CM discriminant -12
CM discriminant -16
CM discriminant -19
CM discriminant -27
CM discriminant -28
CM discriminant -43
CM discriminant -67
CM discriminant -163
Bad$\ p$
include
exclude
exactly
subset
Discriminant
Regulator
Analytic order of Ш
Galois image
Isogeny class size
Isogeny class degree
Cyclic isogeny degree
$p\ $div$\ $|Ш|
include
exclude
exactly
subset
Nonmax$\ \ell$
include
exclude
exactly
subset
Curves per isogeny class
Reduction
Integral points
Faltings height
all
one
semistable
not semistable
potentially good
not potentially good
Sort order
Select
Search again
Random curve
▲ conductor
rank
torsion
CM discriminant
regulator
analytic Ш
isogeny class size
isogeny class degree
integral points
modular degree
Faltings height
columns to display
✓ LMFDB curve label
Cremona curve label
✓ LMFDB class label
Cremona class label
class size
class degree
✓ conductor
discriminant
✓ rank
✓ torsion
Qbar-end algebra
✓ CM discriminant
Sato-Tate group
semistable
potentially good
nonmaximal primes
ℓ-adic images
mod-ℓ images
regulator
analytic Ш
ш primes
integral points
modular degree
Faltings height
j-invariant
Weierstrass coeffs
✓ Weierstrass equation
Results (6 matches)
Download to
Pari/GP
SageMath
Magma
Label
Cremona label
Class
Cremona class
Class size
Class degree
Conductor
Discriminant
Rank
Torsion
$\textrm{End}^0(E_{\overline\Q})$
CM
Sato-Tate
Semistable
Potentially good
Nonmax $\ell$
$\ell$-adic images
mod-$\ell$ images
Regulator
$Ш_{\textrm{an}}$
Ш primes
Integral points
Modular degree
Faltings height
j-invariant
Weierstrass coefficients
Weierstrass equation
14.a1
14a5
14.a
14a
$6$
$18$
\( 2 \cdot 7 \)
\( 2^{9} \cdot 7^{2} \)
$0$
$\Z/2\Z$
$\Q$
$\mathrm{SU}(2)$
✓
$2, 3$
8.6.0.6
,
9.24.0.3
2B
,
3B.1.2
$1$
$1$
$0$
$6$
$0.413101$
$2251439055699625/25088$
$[1, 0, 1, -2731, -55146]$
\(y^2+xy+y=x^3-2731x-55146\)
14.a2
14a3
14.a
14a
$6$
$18$
\( 2 \cdot 7 \)
\( - 2^{18} \cdot 7 \)
$0$
$\Z/2\Z$
$\Q$
$\mathrm{SU}(2)$
✓
$2, 3$
8.6.0.1
,
9.24.0.3
2B
,
3B.1.2
$1$
$1$
$1$
$3$
$0.066527$
$-548347731625/1835008$
$[1, 0, 1, -171, -874]$
\(y^2+xy+y=x^3-171x-874\)
14.a3
14a2
14.a
14a
$6$
$18$
\( 2 \cdot 7 \)
\( 2^{3} \cdot 7^{6} \)
$0$
$\Z/6\Z$
$\Q$
$\mathrm{SU}(2)$
✓
$2, 3$
8.6.0.6
,
3.24.0.1
2B
,
3Cs.1.1
$1$
$1$
$4$
$2$
$-0.136205$
$4956477625/941192$
$[1, 0, 1, -36, -70]$
\(y^2+xy+y=x^3-36x-70\)
14.a4
14a6
14.a
14a
$6$
$18$
\( 2 \cdot 7 \)
\( 2 \cdot 7^{2} \)
$0$
$\Z/6\Z$
$\Q$
$\mathrm{SU}(2)$
✓
$2, 3$
8.6.0.6
,
9.24.0.1
2B
,
3B.1.1
$1$
$1$
$4$
$6$
$-0.685512$
$128787625/98$
$[1, 0, 1, -11, 12]$
\(y^2+xy+y=x^3-11x+12\)
14.a5
14a4
14.a
14a
$6$
$18$
\( 2 \cdot 7 \)
\( - 2^{2} \cdot 7 \)
$0$
$\Z/6\Z$
$\Q$
$\mathrm{SU}(2)$
✓
$2, 3$
8.6.0.1
,
9.24.0.1
2B
,
3B.1.1
$1$
$1$
$5$
$3$
$-1.032085$
$-15625/28$
$[1, 0, 1, -1, 0]$
\(y^2+xy+y=x^3-x\)
14.a6
14a1
14.a
14a
$6$
$18$
\( 2 \cdot 7 \)
\( - 2^{6} \cdot 7^{3} \)
$0$
$\Z/6\Z$
$\Q$
$\mathrm{SU}(2)$
✓
$2, 3$
8.6.0.1
,
3.24.0.1
2B
,
3Cs.1.1
$1$
$1$
$5$
$1$
$-0.482779$
$9938375/21952$
$[1, 0, 1, 4, -6]$
\(y^2+xy+y=x^3+4x-6\)
Download to
Pari/GP
SageMath
Magma