Show commands for:
SageMath
sage: E = EllipticCurve("14.a1")
sage: E.isogeny_class()
Elliptic curves in class 14.a
sage: E.isogeny_class().curves
| LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
|---|---|---|---|---|---|
| 14.a1 | 14a5 | [1, 0, 1, -2731, -55146] | [2] | 6 | |
| 14.a2 | 14a3 | [1, 0, 1, -171, -874] | [2] | 3 | |
| 14.a3 | 14a2 | [1, 0, 1, -36, -70] | [6] | 2 | |
| 14.a4 | 14a6 | [1, 0, 1, -11, 12] | [6] | 6 | |
| 14.a5 | 14a4 | [1, 0, 1, -1, 0] | [6] | 3 | |
| 14.a6 | 14a1 | [1, 0, 1, 4, -6] | [6] | 1 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 14.a have rank \(0\).
Modular form 14.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrr} 1 & 2 & 3 & 9 & 18 & 6 \\ 2 & 1 & 6 & 18 & 9 & 3 \\ 3 & 6 & 1 & 3 & 6 & 2 \\ 9 & 18 & 3 & 1 & 2 & 6 \\ 18 & 9 & 6 & 2 & 1 & 3 \\ 6 & 3 & 2 & 6 & 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.