Show commands for:
SageMath
sage: E = EllipticCurve("26.b1")
sage: E.isogeny_class()
Elliptic curves in class 26b
sage: E.isogeny_class().curves
| LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
|---|---|---|---|---|---|
| 26.b2 | 26b1 | [1, -1, 1, -3, 3] | [7] | 2 | \(\Gamma_0(N)\)-optimal |
| 26.b1 | 26b2 | [1, -1, 1, -213, -1257] | [] | 14 |
Rank
sage: E.rank()
The elliptic curves in class 26b have rank \(0\).
Modular form 26.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.