200.2-a3
200.2-a
10 10 1 0
16 16 1 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
200.2
2 3 ⋅ 5 2 2^{3} \cdot 5^{2} 2 3 ⋅ 5 2
2 8 ⋅ 5 8 2^{8} \cdot 5^{8} 2 8 ⋅ 5 8
0.67209 0.67209 0 . 6 7 2 0 9
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 4 Z ⊕ Z / 4 Z \Z/4\Z\oplus\Z/4\Z Z / 4 Z ⊕ Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
1 1 1
2 6 2^{6} 2 6
1 1 1
2.996888981 2.996888981 2 . 9 9 6 8 8 8 9 8 1
0.749222245
237276 625 \frac{237276}{625} 6 2 5 2 3 7 2 7 6
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , − 4 -4 − 4 , − 6 i ] -6 i\bigr] − 6 i ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 − 4 x − 6 i {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}-4{x}-6i y 2 + ( i + 1 ) x y = x 3 + i x 2 − 4 x − 6 i
2000.2-a3
2000.2-a
10 10 1 0
16 16 1 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
2000.2
2 4 ⋅ 5 3 2^{4} \cdot 5^{3} 2 4 ⋅ 5 3
2 8 ⋅ 5 14 2^{8} \cdot 5^{14} 2 8 ⋅ 5 1 4
1.19516 1.19516 1 . 1 9 5 1 6
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 4 2^{4} 2 4
1 1 1
1.340249496 1.340249496 1 . 3 4 0 2 4 9 4 9 6
1.340249496
237276 625 \frac{237276}{625} 6 2 5 2 3 7 2 7 6
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , i + 1 i + 1 i + 1 , 12 i + 9 12 i + 9 1 2 i + 9 , 51 i + 2 ] 51 i + 2\bigr] 5 1 i + 2 ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( 12 i + 9 ) x + 51 i + 2 {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(12i+9\right){x}+51i+2 y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( 1 2 i + 9 ) x + 5 1 i + 2
2000.3-a3
2000.3-a
10 10 1 0
16 16 1 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
2000.3
2 4 ⋅ 5 3 2^{4} \cdot 5^{3} 2 4 ⋅ 5 3
2 8 ⋅ 5 14 2^{8} \cdot 5^{14} 2 8 ⋅ 5 1 4
1.19516 1.19516 1 . 1 9 5 1 6
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 4 2^{4} 2 4
1 1 1
1.340249496 1.340249496 1 . 3 4 0 2 4 9 4 9 6
1.340249496
237276 625 \frac{237276}{625} 6 2 5 2 3 7 2 7 6
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , i + 1 i + 1 i + 1 , − 14 i + 9 -14 i + 9 − 1 4 i + 9 , 51 i − 2 ] 51 i - 2\bigr] 5 1 i − 2 ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( − 14 i + 9 ) x + 51 i − 2 {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-14i+9\right){x}+51i-2 y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( − 1 4 i + 9 ) x + 5 1 i − 2
5000.3-a3
5000.3-a
10 10 1 0
16 16 1 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
5000.3
2 3 ⋅ 5 4 2^{3} \cdot 5^{4} 2 3 ⋅ 5 4
2 8 ⋅ 5 20 2^{8} \cdot 5^{20} 2 8 ⋅ 5 2 0
1.50283 1.50283 1 . 5 0 2 8 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
1 1 1
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
1 1 1
2 5 2^{5} 2 5
0.933393502 0.933393502 0 . 9 3 3 3 9 3 5 0 2
0.599377796 0.599377796 0 . 5 9 9 3 7 7 7 9 6
2.237821363
237276 625 \frac{237276}{625} 6 2 5 2 3 7 2 7 6
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , − 82 -82 − 8 2 , − 572 i ] -572 i\bigr] − 5 7 2 i ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 − 82 x − 572 i {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}-82{x}-572i y 2 + ( i + 1 ) x y = x 3 + i x 2 − 8 2 x − 5 7 2 i
6400.2-a3
6400.2-a
10 10 1 0
16 16 1 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
6400.2
2 8 ⋅ 5 2 2^{8} \cdot 5^{2} 2 8 ⋅ 5 2
2 20 ⋅ 5 8 2^{20} \cdot 5^{8} 2 2 0 ⋅ 5 8
1.59850 1.59850 1 . 5 9 8 5 0
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
1 1 1
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
1 1 1
2 4 2^{4} 2 4
0.722205338 0.722205338 0 . 7 2 2 2 0 5 3 3 8
1.498444490 1.498444490 1 . 4 9 8 4 4 4 4 9 0
2.164369220
237276 625 \frac{237276}{625} 6 2 5 2 3 7 2 7 6
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 13 -13 − 1 3 , 34 i ] 34 i\bigr] 3 4 i ]
y 2 = x 3 − 13 x + 34 i {y}^2={x}^{3}-13{x}+34i y 2 = x 3 − 1 3 x + 3 4 i
16200.2-a3
16200.2-a
10 10 1 0
16 16 1 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
16200.2
2 3 ⋅ 3 4 ⋅ 5 2 2^{3} \cdot 3^{4} \cdot 5^{2} 2 3 ⋅ 3 4 ⋅ 5 2
2 8 ⋅ 3 12 ⋅ 5 8 2^{8} \cdot 3^{12} \cdot 5^{8} 2 8 ⋅ 3 1 2 ⋅ 5 8
2.01626 2.01626 2 . 0 1 6 2 6
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( 3 ) (a+1), (-a-2), (2a+1), (3) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( 3 )
1 1 1
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
1 1 1
2 5 2^{5} 2 5
0.683761292 0.683761292 0 . 6 8 3 7 6 1 2 9 2
0.998962993 0.998962993 0 . 9 9 8 9 6 2 9 9 3
2.732208912
237276 625 \frac{237276}{625} 6 2 5 2 3 7 2 7 6
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , − 30 -30 − 3 0 , 100 i ] 100 i\bigr] 1 0 0 i ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 − 30 x + 100 i {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}-30{x}+100i y 2 + ( i + 1 ) x y = x 3 + i x 2 − 3 0 x + 1 0 0 i
25600.2-j3
25600.2-j
10 10 1 0
16 16 1 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 26 ⋅ 5 8 2^{26} \cdot 5^{8} 2 2 6 ⋅ 5 8
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 5 2^{5} 2 5
1 1 1
1.059560260 1.059560260 1 . 0 5 9 5 6 0 2 6 0
2.119120521
237276 625 \frac{237276}{625} 6 2 5 2 3 7 2 7 6
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 26 i -26 i − 2 6 i , 68 i + 68 ] 68 i + 68\bigr] 6 8 i + 6 8 ]
y 2 = x 3 − 26 i x + 68 i + 68 {y}^2={x}^{3}-26i{x}+68i+68 y 2 = x 3 − 2 6 i x + 6 8 i + 6 8
25600.2-p3
25600.2-p
10 10 1 0
16 16 1 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 26 ⋅ 5 8 2^{26} \cdot 5^{8} 2 2 6 ⋅ 5 8
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 5 2^{5} 2 5
1 1 1
1.059560260 1.059560260 1 . 0 5 9 5 6 0 2 6 0
2.119120521
237276 625 \frac{237276}{625} 6 2 5 2 3 7 2 7 6
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , 26 i 26 i 2 6 i , − 68 i + 68 ] -68 i + 68\bigr] − 6 8 i + 6 8 ]
y 2 = x 3 + 26 i x − 68 i + 68 {y}^2={x}^{3}+26i{x}-68i+68 y 2 = x 3 + 2 6 i x − 6 8 i + 6 8
32000.2-l3
32000.2-l
10 10 1 0
16 16 1 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
32000.2
2 8 ⋅ 5 3 2^{8} \cdot 5^{3} 2 8 ⋅ 5 3
2 20 ⋅ 5 14 2^{20} \cdot 5^{14} 2 2 0 ⋅ 5 1 4
2.39032 2.39032 2 . 3 9 0 3 2
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 6 2^{6} 2 6
1 1 1
0.670124748 0.670124748 0 . 6 7 0 1 2 4 7 4 8
2.680498993
237276 625 \frac{237276}{625} 6 2 5 2 3 7 2 7 6
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , 52 i + 39 52 i + 39 5 2 i + 3 9 , 374 i + 68 ] 374 i + 68\bigr] 3 7 4 i + 6 8 ]
y 2 = x 3 + ( 52 i + 39 ) x + 374 i + 68 {y}^2={x}^{3}+\left(52i+39\right){x}+374i+68 y 2 = x 3 + ( 5 2 i + 3 9 ) x + 3 7 4 i + 6 8
32000.3-l3
32000.3-l
10 10 1 0
16 16 1 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
32000.3
2 8 ⋅ 5 3 2^{8} \cdot 5^{3} 2 8 ⋅ 5 3
2 20 ⋅ 5 14 2^{20} \cdot 5^{14} 2 2 0 ⋅ 5 1 4
2.39032 2.39032 2 . 3 9 0 3 2
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 6 2^{6} 2 6
1 1 1
0.670124748 0.670124748 0 . 6 7 0 1 2 4 7 4 8
2.680498993
237276 625 \frac{237276}{625} 6 2 5 2 3 7 2 7 6
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 52 i + 39 -52 i + 39 − 5 2 i + 3 9 , − 374 i + 68 ] -374 i + 68\bigr] − 3 7 4 i + 6 8 ]
y 2 = x 3 + ( − 52 i + 39 ) x − 374 i + 68 {y}^2={x}^{3}+\left(-52i+39\right){x}-374i+68 y 2 = x 3 + ( − 5 2 i + 3 9 ) x − 3 7 4 i + 6 8
57800.4-e3
57800.4-e
10 10 1 0
16 16 1 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
57800.4
2 3 ⋅ 5 2 ⋅ 1 7 2 2^{3} \cdot 5^{2} \cdot 17^{2} 2 3 ⋅ 5 2 ⋅ 1 7 2
2 8 ⋅ 5 8 ⋅ 1 7 6 2^{8} \cdot 5^{8} \cdot 17^{6} 2 8 ⋅ 5 8 ⋅ 1 7 6
2.77109 2.77109 2 . 7 7 1 0 9
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 ) (a+1), (-a-2), (2a+1), (a+4) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a + 4 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 6 2^{6} 2 6
1 1 1
0.726852342 0.726852342 0 . 7 2 6 8 5 2 3 4 2
2.907409369
237276 625 \frac{237276}{625} 6 2 5 2 3 7 2 7 6
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , 26 i + 48 26 i + 48 2 6 i + 4 8 , 224 i + 208 ] 224 i + 208\bigr] 2 2 4 i + 2 0 8 ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( 26 i + 48 ) x + 224 i + 208 {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(26i+48\right){x}+224i+208 y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( 2 6 i + 4 8 ) x + 2 2 4 i + 2 0 8
57800.6-d3
57800.6-d
10 10 1 0
16 16 1 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
57800.6
2 3 ⋅ 5 2 ⋅ 1 7 2 2^{3} \cdot 5^{2} \cdot 17^{2} 2 3 ⋅ 5 2 ⋅ 1 7 2
2 8 ⋅ 5 8 ⋅ 1 7 6 2^{8} \cdot 5^{8} \cdot 17^{6} 2 8 ⋅ 5 8 ⋅ 1 7 6
2.77109 2.77109 2 . 7 7 1 0 9
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a − 4 ) (a+1), (-a-2), (2a+1), (a-4) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( a − 4 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 6 2^{6} 2 6
1 1 1
0.726852342 0.726852342 0 . 7 2 6 8 5 2 3 4 2
2.907409369
237276 625 \frac{237276}{625} 6 2 5 2 3 7 2 7 6
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , − 26 i + 48 -26 i + 48 − 2 6 i + 4 8 , 224 i − 208 ] 224 i - 208\bigr] 2 2 4 i − 2 0 8 ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( − 26 i + 48 ) x + 224 i − 208 {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-26i+48\right){x}+224i-208 y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( − 2 6 i + 4 8 ) x + 2 2 4 i − 2 0 8
67600.4-d3
67600.4-d
10 10 1 0
16 16 1 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
67600.4
2 4 ⋅ 5 2 ⋅ 1 3 2 2^{4} \cdot 5^{2} \cdot 13^{2} 2 4 ⋅ 5 2 ⋅ 1 3 2
2 8 ⋅ 5 8 ⋅ 1 3 6 2^{8} \cdot 5^{8} \cdot 13^{6} 2 8 ⋅ 5 8 ⋅ 1 3 6
2.88174 2.88174 2 . 8 8 1 7 4
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( − 3 a − 2 ) (a+1), (-a-2), (2a+1), (-3a-2) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( − 3 a − 2 )
1 1 1
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 6 2^{6} 2 6
0.564622956 0.564622956 0 . 5 6 4 6 2 2 9 5 6
0.831187453 0.831187453 0 . 8 3 1 1 8 7 4 5 3
3.754460134
237276 625 \frac{237276}{625} 6 2 5 2 3 7 2 7 6
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , 39 i − 17 39 i - 17 3 9 i − 1 7 , 30 i − 215 ] 30 i - 215\bigr] 3 0 i − 2 1 5 ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( 39 i − 17 ) x + 30 i − 215 {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(39i-17\right){x}+30i-215 y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( 3 9 i − 1 7 ) x + 3 0 i − 2 1 5
67600.6-f3
67600.6-f
10 10 1 0
16 16 1 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
67600.6
2 4 ⋅ 5 2 ⋅ 1 3 2 2^{4} \cdot 5^{2} \cdot 13^{2} 2 4 ⋅ 5 2 ⋅ 1 3 2
2 8 ⋅ 5 8 ⋅ 1 3 6 2^{8} \cdot 5^{8} \cdot 13^{6} 2 8 ⋅ 5 8 ⋅ 1 3 6
2.88174 2.88174 2 . 8 8 1 7 4
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( 2 a + 3 ) (a+1), (-a-2), (2a+1), (2a+3) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) , ( 2 a + 3 )
1 1 1
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 6 2^{6} 2 6
0.564622956 0.564622956 0 . 5 6 4 6 2 2 9 5 6
0.831187453 0.831187453 0 . 8 3 1 1 8 7 4 5 3
3.754460134
237276 625 \frac{237276}{625} 6 2 5 2 3 7 2 7 6
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , i + 1 i + 1 i + 1 , − 40 i − 17 -40 i - 17 − 4 0 i − 1 7 , − 47 i − 176 ] -47 i - 176\bigr] − 4 7 i − 1 7 6 ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( − 40 i − 17 ) x − 47 i − 176 {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-40i-17\right){x}-47i-176 y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( − 4 0 i − 1 7 ) x − 4 7 i − 1 7 6