Learn more

Refine search


Results (14 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
200.2-a3 200.2-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \) 0 $\Z/4\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $2.996888981$ 0.749222245 \( \frac{237276}{625} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( -4\) , \( -6 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}-4{x}-6i$
2000.2-a3 2000.2-a \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{3} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.340249496$ 1.340249496 \( \frac{237276}{625} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( 12 i + 9\) , \( 51 i + 2\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(12i+9\right){x}+51i+2$
2000.3-a3 2000.3-a \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{3} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.340249496$ 1.340249496 \( \frac{237276}{625} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -14 i + 9\) , \( 51 i - 2\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-14i+9\right){x}+51i-2$
5000.3-a3 5000.3-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{4} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.933393502$ $0.599377796$ 2.237821363 \( \frac{237276}{625} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( -82\) , \( -572 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}-82{x}-572i$
6400.2-a3 6400.2-a \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.722205338$ $1.498444490$ 2.164369220 \( \frac{237276}{625} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -13\) , \( 34 i\bigr] \) ${y}^2={x}^{3}-13{x}+34i$
16200.2-a3 16200.2-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.683761292$ $0.998962993$ 2.732208912 \( \frac{237276}{625} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( -30\) , \( 100 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}-30{x}+100i$
25600.2-j3 25600.2-j \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.059560260$ 2.119120521 \( \frac{237276}{625} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -26 i\) , \( 68 i + 68\bigr] \) ${y}^2={x}^{3}-26i{x}+68i+68$
25600.2-p3 25600.2-p \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.059560260$ 2.119120521 \( \frac{237276}{625} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 26 i\) , \( -68 i + 68\bigr] \) ${y}^2={x}^{3}+26i{x}-68i+68$
32000.2-l3 32000.2-l \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 5^{3} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.670124748$ 2.680498993 \( \frac{237276}{625} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 52 i + 39\) , \( 374 i + 68\bigr] \) ${y}^2={x}^{3}+\left(52i+39\right){x}+374i+68$
32000.3-l3 32000.3-l \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 5^{3} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.670124748$ 2.680498993 \( \frac{237276}{625} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -52 i + 39\) , \( -374 i + 68\bigr] \) ${y}^2={x}^{3}+\left(-52i+39\right){x}-374i+68$
57800.4-e3 57800.4-e \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \cdot 17^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.726852342$ 2.907409369 \( \frac{237276}{625} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 26 i + 48\) , \( 224 i + 208\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(26i+48\right){x}+224i+208$
57800.6-d3 57800.6-d \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \cdot 17^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.726852342$ 2.907409369 \( \frac{237276}{625} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( -26 i + 48\) , \( 224 i - 208\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-26i+48\right){x}+224i-208$
67600.4-d3 67600.4-d \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.564622956$ $0.831187453$ 3.754460134 \( \frac{237276}{625} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 39 i - 17\) , \( 30 i - 215\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(39i-17\right){x}+30i-215$
67600.6-f3 67600.6-f \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.564622956$ $0.831187453$ 3.754460134 \( \frac{237276}{625} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -40 i - 17\) , \( -47 i - 176\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-40i-17\right){x}-47i-176$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.