Learn more

Refine search


Results (14 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
200.2-a3 200.2-a Q(1)\Q(\sqrt{-1}) 2352 2^{3} \cdot 5^{2} 0 Z/4ZZ/4Z\Z/4\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 2.9968889812.996888981 0.749222245 237276625 \frac{237276}{625} [i+1 \bigl[i + 1 , i i , 0 0 , 4 -4 , 6i] -6 i\bigr] y2+(i+1)xy=x3+ix24x6i{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}-4{x}-6i
2000.2-a3 2000.2-a Q(1)\Q(\sqrt{-1}) 2453 2^{4} \cdot 5^{3} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.3402494961.340249496 1.340249496 237276625 \frac{237276}{625} [i+1 \bigl[i + 1 , i i , i+1 i + 1 , 12i+9 12 i + 9 , 51i+2] 51 i + 2\bigr] y2+(i+1)xy+(i+1)y=x3+ix2+(12i+9)x+51i+2{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(12i+9\right){x}+51i+2
2000.3-a3 2000.3-a Q(1)\Q(\sqrt{-1}) 2453 2^{4} \cdot 5^{3} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.3402494961.340249496 1.340249496 237276625 \frac{237276}{625} [i+1 \bigl[i + 1 , i i , i+1 i + 1 , 14i+9 -14 i + 9 , 51i2] 51 i - 2\bigr] y2+(i+1)xy+(i+1)y=x3+ix2+(14i+9)x+51i2{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-14i+9\right){x}+51i-2
5000.3-a3 5000.3-a Q(1)\Q(\sqrt{-1}) 2354 2^{3} \cdot 5^{4} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.9333935020.933393502 0.5993777960.599377796 2.237821363 237276625 \frac{237276}{625} [i+1 \bigl[i + 1 , i i , 0 0 , 82 -82 , 572i] -572 i\bigr] y2+(i+1)xy=x3+ix282x572i{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}-82{x}-572i
6400.2-a3 6400.2-a Q(1)\Q(\sqrt{-1}) 2852 2^{8} \cdot 5^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.7222053380.722205338 1.4984444901.498444490 2.164369220 237276625 \frac{237276}{625} [0 \bigl[0 , 0 0 , 0 0 , 13 -13 , 34i] 34 i\bigr] y2=x313x+34i{y}^2={x}^{3}-13{x}+34i
16200.2-a3 16200.2-a Q(1)\Q(\sqrt{-1}) 233452 2^{3} \cdot 3^{4} \cdot 5^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.6837612920.683761292 0.9989629930.998962993 2.732208912 237276625 \frac{237276}{625} [i+1 \bigl[i + 1 , i i , 0 0 , 30 -30 , 100i] 100 i\bigr] y2+(i+1)xy=x3+ix230x+100i{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}-30{x}+100i
25600.2-j3 25600.2-j Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.0595602601.059560260 2.119120521 237276625 \frac{237276}{625} [0 \bigl[0 , 0 0 , 0 0 , 26i -26 i , 68i+68] 68 i + 68\bigr] y2=x326ix+68i+68{y}^2={x}^{3}-26i{x}+68i+68
25600.2-p3 25600.2-p Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.0595602601.059560260 2.119120521 237276625 \frac{237276}{625} [0 \bigl[0 , 0 0 , 0 0 , 26i 26 i , 68i+68] -68 i + 68\bigr] y2=x3+26ix68i+68{y}^2={x}^{3}+26i{x}-68i+68
32000.2-l3 32000.2-l Q(1)\Q(\sqrt{-1}) 2853 2^{8} \cdot 5^{3} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.6701247480.670124748 2.680498993 237276625 \frac{237276}{625} [0 \bigl[0 , 0 0 , 0 0 , 52i+39 52 i + 39 , 374i+68] 374 i + 68\bigr] y2=x3+(52i+39)x+374i+68{y}^2={x}^{3}+\left(52i+39\right){x}+374i+68
32000.3-l3 32000.3-l Q(1)\Q(\sqrt{-1}) 2853 2^{8} \cdot 5^{3} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.6701247480.670124748 2.680498993 237276625 \frac{237276}{625} [0 \bigl[0 , 0 0 , 0 0 , 52i+39 -52 i + 39 , 374i+68] -374 i + 68\bigr] y2=x3+(52i+39)x374i+68{y}^2={x}^{3}+\left(-52i+39\right){x}-374i+68
57800.4-e3 57800.4-e Q(1)\Q(\sqrt{-1}) 2352172 2^{3} \cdot 5^{2} \cdot 17^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.7268523420.726852342 2.907409369 237276625 \frac{237276}{625} [i+1 \bigl[i + 1 , i i , 0 0 , 26i+48 26 i + 48 , 224i+208] 224 i + 208\bigr] y2+(i+1)xy=x3+ix2+(26i+48)x+224i+208{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(26i+48\right){x}+224i+208
57800.6-d3 57800.6-d Q(1)\Q(\sqrt{-1}) 2352172 2^{3} \cdot 5^{2} \cdot 17^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.7268523420.726852342 2.907409369 237276625 \frac{237276}{625} [i+1 \bigl[i + 1 , i i , 0 0 , 26i+48 -26 i + 48 , 224i208] 224 i - 208\bigr] y2+(i+1)xy=x3+ix2+(26i+48)x+224i208{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-26i+48\right){x}+224i-208
67600.4-d3 67600.4-d Q(1)\Q(\sqrt{-1}) 2452132 2^{4} \cdot 5^{2} \cdot 13^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.5646229560.564622956 0.8311874530.831187453 3.754460134 237276625 \frac{237276}{625} [i+1 \bigl[i + 1 , i i , 0 0 , 39i17 39 i - 17 , 30i215] 30 i - 215\bigr] y2+(i+1)xy=x3+ix2+(39i17)x+30i215{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(39i-17\right){x}+30i-215
67600.6-f3 67600.6-f Q(1)\Q(\sqrt{-1}) 2452132 2^{4} \cdot 5^{2} \cdot 13^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.5646229560.564622956 0.8311874530.831187453 3.754460134 237276625 \frac{237276}{625} [i+1 \bigl[i + 1 , i i , i+1 i + 1 , 40i17 -40 i - 17 , 47i176] -47 i - 176\bigr] y2+(i+1)xy+(i+1)y=x3+ix2+(40i17)x47i176{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-40i-17\right){x}-47i-176
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.