Base field \(\Q(\sqrt{-1}) \)
Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).
Elliptic curves in class 25600.2-p over \(\Q(\sqrt{-1}) \)
Isogeny class 25600.2-p contains 10 curves linked by isogenies of degrees dividing 16.
Rank
Rank: \( 0 \)Isogeny matrix
\(\left(\begin{array}{rrrrrrrrrr} 1 & 4 & 2 & 8 & 2 & 4 & 8 & 8 & 8 & 2 \\ 4 & 1 & 2 & 2 & 8 & 4 & 8 & 8 & 2 & 8 \\ 2 & 2 & 1 & 4 & 4 & 2 & 4 & 4 & 4 & 4 \\ 8 & 2 & 4 & 1 & 16 & 8 & 16 & 16 & 4 & 16 \\ 2 & 8 & 4 & 16 & 1 & 8 & 16 & 16 & 16 & 4 \\ 4 & 4 & 2 & 8 & 8 & 1 & 2 & 2 & 8 & 8 \\ 8 & 8 & 4 & 16 & 16 & 2 & 1 & 4 & 16 & 16 \\ 8 & 8 & 4 & 16 & 16 & 2 & 4 & 1 & 16 & 16 \\ 8 & 2 & 4 & 4 & 16 & 8 & 16 & 16 & 1 & 16 \\ 2 & 8 & 4 & 16 & 4 & 8 & 16 & 16 & 16 & 1 \end{array}\right)\)