Properties

Base field \(\Q(\sqrt{-1}) \)
Label 2.0.4.1-2000.3-a
Conductor 2000.3
Rank \( 0 \)

Related objects

Learn more

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

Elliptic curves in class 2000.3-a over \(\Q(\sqrt{-1}) \)

Isogeny class 2000.3-a contains 10 curves linked by isogenies of degrees dividing 16.

Curve label Weierstrass Coefficients
2000.3-a1 \( \bigl[i + 1\) , \( i\) , \( 0\) , \( -83 i + 249\) , \( -1336 i - 727\bigr] \)
2000.3-a2 \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -264 i + 9\) , \( 1101 i - 1102\bigr] \)
2000.3-a3 \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -14 i + 9\) , \( 51 i - 2\bigr] \)
2000.3-a4 \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -314 i - 141\) , \( -829 i - 2092\bigr] \)
2000.3-a5 \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 47 i + 339\) , \( 88 i - 2395\bigr] \)
2000.3-a6 \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 7 i - 6\) , \( -11 i - 2\bigr] \)
2000.3-a7 \( \bigl[0\) , \( 0\) , \( 0\) , \( -8 i + 6\) , \( -2 i - 11\bigr] \)
2000.3-a8 \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 107 i - 81\) , \( -626 i + 53\bigr] \)
2000.3-a9 \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -4214 i + 159\) , \( 70231 i - 76512\bigr] \)
2000.3-a10 \( \bigl[i + 1\) , \( i\) , \( 0\) , \( -1333 i + 3999\) , \( -91336 i - 48227\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rrrrrrrrrr} 1 & 4 & 2 & 8 & 2 & 4 & 8 & 8 & 8 & 2 \\ 4 & 1 & 2 & 2 & 8 & 4 & 8 & 8 & 2 & 8 \\ 2 & 2 & 1 & 4 & 4 & 2 & 4 & 4 & 4 & 4 \\ 8 & 2 & 4 & 1 & 16 & 8 & 16 & 16 & 4 & 16 \\ 2 & 8 & 4 & 16 & 1 & 8 & 16 & 16 & 16 & 4 \\ 4 & 4 & 2 & 8 & 8 & 1 & 2 & 2 & 8 & 8 \\ 8 & 8 & 4 & 16 & 16 & 2 & 1 & 4 & 16 & 16 \\ 8 & 8 & 4 & 16 & 16 & 2 & 4 & 1 & 16 & 16 \\ 8 & 2 & 4 & 4 & 16 & 8 & 16 & 16 & 1 & 16 \\ 2 & 8 & 4 & 16 & 4 & 8 & 16 & 16 & 16 & 1 \end{array}\right)\)

Isogeny graph