Properties

Base field \(\Q(\sqrt{-1}) \)
Label 2.0.4.1-2000.2-a
Conductor 2000.2
Rank \( 0 \)

Related objects

Learn more

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

Elliptic curves in class 2000.2-a over \(\Q(\sqrt{-1}) \)

Isogeny class 2000.2-a contains 10 curves linked by isogenies of degrees dividing 16.

Curve label Weierstrass Coefficients
2000.2-a1 \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 263 i + 9\) , \( -1092 i - 1365\bigr] \)
2000.2-a2 \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( 82 i + 249\) , \( 1585 i - 810\bigr] \)
2000.2-a3 \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( 12 i + 9\) , \( 51 i + 2\bigr] \)
2000.2-a4 \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -48 i + 339\) , \( 251 i - 2348\bigr] \)
2000.2-a5 \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 313 i - 141\) , \( 688 i - 2405\bigr] \)
2000.2-a6 \( \bigl[i + 1\) , \( i\) , \( 0\) , \( -7 i - 6\) , \( -11 i + 2\bigr] \)
2000.2-a7 \( \bigl[0\) , \( 0\) , \( 0\) , \( 8 i + 6\) , \( 2 i - 11\bigr] \)
2000.2-a8 \( \bigl[i + 1\) , \( i\) , \( 0\) , \( -107 i - 81\) , \( -626 i - 53\bigr] \)
2000.2-a9 \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( 1332 i + 3999\) , \( 95335 i - 49560\bigr] \)
2000.2-a10 \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 4213 i + 159\) , \( -70072 i - 80725\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rrrrrrrrrr} 1 & 4 & 2 & 8 & 2 & 4 & 8 & 8 & 8 & 2 \\ 4 & 1 & 2 & 2 & 8 & 4 & 8 & 8 & 2 & 8 \\ 2 & 2 & 1 & 4 & 4 & 2 & 4 & 4 & 4 & 4 \\ 8 & 2 & 4 & 1 & 16 & 8 & 16 & 16 & 4 & 16 \\ 2 & 8 & 4 & 16 & 1 & 8 & 16 & 16 & 16 & 4 \\ 4 & 4 & 2 & 8 & 8 & 1 & 2 & 2 & 8 & 8 \\ 8 & 8 & 4 & 16 & 16 & 2 & 1 & 4 & 16 & 16 \\ 8 & 8 & 4 & 16 & 16 & 2 & 4 & 1 & 16 & 16 \\ 8 & 2 & 4 & 4 & 16 & 8 & 16 & 16 & 1 & 16 \\ 2 & 8 & 4 & 16 & 4 & 8 & 16 & 16 & 16 & 1 \end{array}\right)\)

Isogeny graph