Properties

Base field \(\Q(\sqrt{-1}) \)
Label 2.0.4.1-5000.3-a
Conductor 5000.3
Rank \( 1 \)

Related objects

Learn more

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

Elliptic curves in class 5000.3-a over \(\Q(\sqrt{-1}) \)

Isogeny class 5000.3-a contains 10 curves linked by isogenies of degrees dividing 16.

Curve label Weierstrass Coefficients
5000.3-a1 \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -751 i - 1082\) , \( 13990 i + 11750\bigr] \)
5000.3-a2 \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 750 i - 1082\) , \( -15072 i + 11000\bigr] \)
5000.3-a3 \( \bigl[i + 1\) , \( i\) , \( 0\) , \( -82\) , \( -572 i\bigr] \)
5000.3-a4 \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 1500 i - 832\) , \( 3428 i + 25500\bigr] \)
5000.3-a5 \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -1501 i - 832\) , \( -4260 i + 27000\bigr] \)
5000.3-a6 \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -i + 43\) , \( 115 i\bigr] \)
5000.3-a7 \( \bigl[0\) , \( 0\) , \( 0\) , \( -50\) , \( 125\bigr] \)
5000.3-a8 \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -i + 668\) , \( 6990 i\bigr] \)
5000.3-a9 \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 12000 i - 17332\) , \( -937572 i + 718500\bigr] \)
5000.3-a10 \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -12001 i - 17332\) , \( 920240 i + 730500\bigr] \)

Rank

Rank: \( 1 \)

Isogeny matrix

\(\left(\begin{array}{rrrrrrrrrr} 1 & 4 & 2 & 8 & 2 & 4 & 8 & 8 & 8 & 2 \\ 4 & 1 & 2 & 2 & 8 & 4 & 8 & 8 & 2 & 8 \\ 2 & 2 & 1 & 4 & 4 & 2 & 4 & 4 & 4 & 4 \\ 8 & 2 & 4 & 1 & 16 & 8 & 16 & 16 & 4 & 16 \\ 2 & 8 & 4 & 16 & 1 & 8 & 16 & 16 & 16 & 4 \\ 4 & 4 & 2 & 8 & 8 & 1 & 2 & 2 & 8 & 8 \\ 8 & 8 & 4 & 16 & 16 & 2 & 1 & 4 & 16 & 16 \\ 8 & 8 & 4 & 16 & 16 & 2 & 4 & 1 & 16 & 16 \\ 8 & 2 & 4 & 4 & 16 & 8 & 16 & 16 & 1 & 16 \\ 2 & 8 & 4 & 16 & 4 & 8 & 16 & 16 & 16 & 1 \end{array}\right)\)

Isogeny graph