Properties

Base field \(\Q(\sqrt{-1}) \)
Label 2.0.4.1-25600.2-j
Conductor 25600.2
Rank \( 0 \)

Related objects

Learn more

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

Elliptic curves in class 25600.2-j over \(\Q(\sqrt{-1}) \)

Isogeny class 25600.2-j contains 10 curves linked by isogenies of degrees dividing 16.

Curve label Weierstrass Coefficients
25600.2-j1 \( \bigl[0\) , \( 0\) , \( 0\) , \( -346 i + 240\) , \( 404 i + 3316\bigr] \)
25600.2-j2 \( \bigl[0\) , \( 0\) , \( 0\) , \( -346 i - 240\) , \( 3316 i + 404\bigr] \)
25600.2-j3 \( \bigl[0\) , \( 0\) , \( 0\) , \( -26 i\) , \( 68 i + 68\bigr] \)
25600.2-j4 \( \bigl[0\) , \( 0\) , \( 0\) , \( -266 i - 480\) , \( 2868 i - 3852\bigr] \)
25600.2-j5 \( \bigl[0\) , \( 0\) , \( 0\) , \( -266 i + 480\) , \( -3852 i + 2868\bigr] \)
25600.2-j6 \( \bigl[0\) , \( 0\) , \( 0\) , \( 14 i\) , \( 12 i + 12\bigr] \)
25600.2-j7 \( \bigl[0\) , \( 0\) , \( 0\) , \( 4 i\) , \( -2 i - 2\bigr] \)
25600.2-j8 \( \bigl[0\) , \( 0\) , \( 0\) , \( 214 i\) , \( 852 i + 852\bigr] \)
25600.2-j9 \( \bigl[0\) , \( 0\) , \( 0\) , \( -5546 i - 3840\) , \( 211636 i + 26164\bigr] \)
25600.2-j10 \( \bigl[0\) , \( 0\) , \( 0\) , \( -5546 i + 3840\) , \( 26164 i + 211636\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rrrrrrrrrr} 1 & 4 & 2 & 8 & 2 & 4 & 8 & 8 & 8 & 2 \\ 4 & 1 & 2 & 2 & 8 & 4 & 8 & 8 & 2 & 8 \\ 2 & 2 & 1 & 4 & 4 & 2 & 4 & 4 & 4 & 4 \\ 8 & 2 & 4 & 1 & 16 & 8 & 16 & 16 & 4 & 16 \\ 2 & 8 & 4 & 16 & 1 & 8 & 16 & 16 & 16 & 4 \\ 4 & 4 & 2 & 8 & 8 & 1 & 2 & 2 & 8 & 8 \\ 8 & 8 & 4 & 16 & 16 & 2 & 1 & 4 & 16 & 16 \\ 8 & 8 & 4 & 16 & 16 & 2 & 4 & 1 & 16 & 16 \\ 8 & 2 & 4 & 4 & 16 & 8 & 16 & 16 & 1 & 16 \\ 2 & 8 & 4 & 16 & 4 & 8 & 16 & 16 & 16 & 1 \end{array}\right)\)

Isogeny graph